
JVM Ecosystem
Report 2021

Table of contents

Introduction												 3

Report highlights											 4

JDKs in production											 5

JDKs in development											 7

JDK versions in production environments								 9

JDK versions in development										 11

Java, Changing Faster Than Ever After 26 Years							 12

JVM languages used for applications in production							 14

Most popular IDEs											 18

Tools for building applications 									 20

Securing vulnerabilities in the Java ecosystem with Snyk						 22

Application frameworks										 25

Demographics												 26

The State of Spring											 29

All rights reserved. 2021 © Snyk 3

Introduction

Welcome to our annual JVM ecosystem report! This report presents the results of the largest annual survey on the

state of the JVM ecosystem. The survey was conducted over a period of six weeks through February and March 2021,

gathering the responses of over 2000 Java developers.

This year's survey is a cooperation between Snyk and Azul and was slightly different from the previous surveys.

We aimed for the survey to be more concise and focus only on the most important aspects of JVM developers today.

Additionally, this year every participant was allowed to choose multiple options. We believe that the way the 2021

survey was designed, we have a better and more comprehensive view of the current JVM ecosystem. In addition,

in this report, we also looked at different open data sources like GitHub and Google Trends to see how that data

compares to the survey results.

We would like to thank everyone who participated and offered their insights on Java and JVM-related topics. For this

survey, we teamed up with conferences and communities across the JVM ecosystem to reach as many developers as

possible. Big shoutout to Foojay.io, the VirtualJUG, and other Java communities for the invaluable help. This massive

effort results in an impressive number of developers participating in the survey, giving great insight into the current

state of the JVM ecosystem. You can find all demographic information at the end of this report.

Another big shoutout to Josh Long from Tanzu VMWare, and Simon Ritter from Azul for supplying great highlight

stories on their field of expertise. This is something we couldn't get from a survey alone.

Happy reading!

All rights reserved. 2021 © Snyk 4

Report highlights
Before we start, here's a TL;DR overview of the main highlights in this report.

44% of developers use
AdoptOpenJDK builds
in production

90% of developers use Java
for application development

50% of developers
use Spring Boot

75% of developers use Maven
to build their projects

70% of developers use
IntelliJ IDEA

60% of developers use Java
SE 11 in production

25% of developers use
Java SE 15 in development

1 in 6 developers uses
Kotlin, making it the second
most popular language on
the JVM

11 15

All rights reserved. 2021 © Snyk 5

JDKs in production

With a rising number of JDK suppliers and

OpenJDK binaries, we traditionally kick off the

report with the most critical question: Which JDKs

are developers using in production?

Last year, we found out that many developers use

more than one JDK in production. So this year, we

changed this question (and almost all the other)

to allow multiple answers. For this question,

respondents could choose as many options as

were applicable.

50%40%

3%

0% 20% 30%10%

2.9%

1.9%

0.8%

1.1%

1.3%

1.6%

0.5%

0.3%

Azul Zing

IBM Java SDK

Alibaba Dragonwell builds of OpenJDK

Eclipse Adoptium builds of OpenJDK

Oracle GraalVM Enterprise Edition

Bellsoft Liberica builds of OpenJDK

SAP SapMachine builds of OpenJDK

HP-UX Java

Other

None

8.1%

7.7%

6.2%

Red Hat builds of OpenJDK

The Linux Distro’s bundled OpenJDK package

Oracle GraalVM Community Edition

Multiple responses allowed.

0.8%

28%

9.1%

44.1%

23%

15.5%

AdoptOpenJDK builds of OpenJDK

Oracle OpenJDK

Oracle JDK

Azul Zulu builds of OpenJDK

Amazon Corretto builds of OpenJDK

Multiple responses allowed.

All rights reserved. 2021 © Snyk 6

Over 37% of our respondents say they are using

at least two different JDKs, and 12.5% even use

three or more different JDKs in production.

It is interesting to see that 44.1% of respondents

use the free AdoptOpenJDK distribution in

production, making it the most prevalent in our

survey. However, we can also see that Oracle

is still a big player in the market, with 28% for

their OpenJDK build and 23% for the commercial

Oracle JDK. The third most popular supplier of

JDKs in production is Azul, at 15.5% adoption, and

shouldn’t be underestimated.

Google Trends indicate large interest in Oracle JDK

To see how our survey of usage compared with interest, we looked at Google search

trends for AdoptOpenJDK, Oracle JDK, Oracle OpenJDK, and Azul Zulu over the first

three months of 2021. Interestingly enough, Google Trends show a large community

around Oracle JDK. On average, people search twice as much for Oracle JDK than

the number two, AdoptOpenJDK. It is unclear, based on our data, whether this means

that more people outside of this survey use Oracle JDK or that more people search

for supporting documentation about Oracle JDK before getting started.

https://trends.google.com/trends/explore?date=2021-01-01%202021-04-01&q=adoptopenjdk,Oracle%20JDK,Oracle%20OpenJDK,Azul%20Zulu

All rights reserved. 2021 © Snyk 7

JDKs in development

We were also curious about the difference

between the applications in production and

development. Therefore, we asked the same

question about the use of JDKs for development.

Although we expected some differences between

development environments and production, it

turns out that the numbers are pretty similar.

Similar to production, the majority of the

developers are using OpenJDK builds by

AdoptOpenJDK in development. This accounts

for almost half of the respondents!

In general, we see that the OpenJDK distributions

are doing slightly better in development

compared to production. Next to the 48.3%

for AdoptOpenJDK, we also see slightly higher

numbers for Oracle OpenJDK 29.3% and Azul Zulu

17.5%. The proprietary JDK builds like Oracle JDK

22.4% and Azul Zing 1.8% score slightly less than

in development.

50%40%

2.3%

0% 20% 30%10%

1.8%

1.8%

1%

1.1%

1.5%

1.8%

0.3%

0.2%

Azul Zing

IBM Java SDK

Alibaba Dragonwell builds of OpenJDK

Eclipse Adoptium builds of OpenJDK

Oracle GraalVM Enterprise Edition

Bellsoft Liberica builds of OpenJDK

SAP SapMachine builds of OpenJDK

HP-UX Java

Other

None

8.6%

8.3%

5.2%

The Linux Distro’s bundled OpenJDK package

Amazon Corretto builds of OpenJDK

Red Hat builds of OpenJDK

Multiple responses allowed.

0.4%

29.3%

9.7%

48.3%

22.4%

17.5%

AdoptOpenJDK builds of OpenJDK

Oracle OpenJDK

Oracle JDK

Azul Zulu builds of OpenJDK

Oracle GraalVM Community Edition

Multiple responses allowed.

All rights reserved. 2021 © Snyk 8

All together, we still see that Oracle is still the

most popular vendor with multiple different builds.

We also noticed a slight increase in the number

of JDK’s people used compared to production.

Almost 39% of the respondents use two or more

JDKs, and 14% use three or more different JDK

suppliers in development. Still, all these numbers

are just minor deviations, and the usage of JDKs

in production and development can be considered

very similar.

All rights reserved. 2021 © Snyk 9

JDK versions in production environments

Another exciting question every year is the

adoption rate of newer versions. Are developers

working with the more recent version of Java, or

are they unable or possibly unwilling to upgrade?

In the last couple of years, we saw that developers

were stuck at Java 8 and not adopting newer

versions. This year we changed the question to

submit the top three Java versions they use

in production.

We found out that 40% of the survey participants

use more than one Java version in production.

Because of this, we can also conclude that more

people than we realized do upgrade to versions

beyond 8. Currently, 61.5% are using Java 11

somewhere in production, and almost 12% are

using the latest release, which was Java 15

during the survey.

This is huge, because it shows that developers

do upgrade their Java version beyond Java 8

to some extent. The mantra that most Java

developers are comfortable staying on Java 8

seems to be slowly breaking apart.

59.9%

0.7%

61.5%

0%

10%

20%

30%

40%

50%

60%

70%

1%3.8%1.9%

109876 or below

1.4%
4.9%

11.7%

2.9%

1514131211

Up to 3 responses allowed.Up to 3 responses allowed.

All rights reserved. 2021 © Snyk 10

We think it’s great to see that older versions like

Java 7 or below are no longer commonly used.

Hopefully, just for that single legacy application

hiding in a basement far, far away. We also see

that non-LTS versions like Java 10, 12, and 13

are not heavily used in production. This might

have something to do with the support of these

versions. The general advice is either stay on the

most recent LTS version, currently Java 11, or

move to the latest release every six months. This

trend is also clearly visible in the survey results.

We know that about 12% of the Java developers

like to use the latest and greatest of Java. More

than half of people who use Java 15 (7.8%)

combined it with other Java versions. This

means that almost 4% of Java developers are

only using Java 15 in production and will most

probably keep upgrading this to the latest version

once it is released, which is quite astonishing.

It is also interesting to see that half of the Java

11 users — currently the most used version in

production — also use Java 8 in their production

stack. Cross-referencing the answers shows

us that 30.2 % use both Java 8 and Java 11

in production. We can definitely conclude

that the adoption of Java version beyond 8 is

something that many developers want and try

to do. That calls for a celebration! Also, it also

confirms that developers need to maintain

older applications that depend on legacy Java

versions next to the newer, improved versions.

All rights reserved. 2021 © Snyk 11

JDK versions in development

Similar to the JDK version in production, almost

65% of the Java developers use Java 11 in

development next to possible other versions.

Just like with the previous question, people

were allowed to choose up to three options.

Interestingly (and excitingly) enough, more

people use Java 11 and fewer people use

Java 8 in development.

This is a remarkable change in perspective

and confirms again that developers want to

migrate to newer Java versions beyond Java

8. Also, 25% of developers, which is quite a

significant amount, are using the latest release

version, Java 15, in development. The early

access version Java 16-EA and Java 17-EA are

unfortunately not yet as popular, but still used

more than the ancient Java 7 and below.

With more than 25% of the Java developers

using Java 15 and almost 65% using Java 11,

we can confidently say that there is a clear

shift away from Java 8. Although, Java 8 will

undoubtedly be part of the developer’s stack

for some time.

50.1%

0.6%

64.3%

0%

10%

20%

30%

40%

50%

60%

70%

1.4%2.5%1.2%

109876 or below

1.8%
7.9%

25.6%

2.5%

1514131211

Up to 3 responses allowed.

4.3% 2.7%

17-EA16-EA

Up to 3 responses allowed.

Java, Changing Faster Than Ever
After 26 Years

It’s amazing to think that Java turned 26 in May, and that the current

release is JDK 16. Thanks to the change to a strict six-month release

cadence, introduced in 2017, we are now seeing the platform develop

faster than at any time in its history.

As developers, the challenge is keeping up to date with all the latest

features and using them in our code. In this survey, we see that Java is still,

by far, the most popular language for developing JVM-based applications.

I’m sure the steady stream of minor enhancements to the core language

will continue to maintain Java’s popularity. I regularly give talks on how

Java is evolving, and it is great to see how even small things can make

developer’s lives easier.

Records, introduced in JDK 14, is an excellent example of a powerful new

feature added to the language without incurring any technical debt. We

now have a very simple, straightforward way to define data classes in Java

without any of the tedious boilerplate code we needed in the past. This

feature also demonstrates another aspect of the new release cadence:

preview features and incubator modules. Features like Records can be

added to the JDK without immediately making them part of the Java SE

standard. Based on feedback from developers, changes can be made where

deemed appropriate (even to the point of removing the feature). Records

were added as a preview feature and, in JDK 15, they were extended to

allow the declaration of records inside a method (local records). This can be

especially beneficial when using the Streams API and shows the power of a

preview feature (which would not have been practical under the old, multi-

year release cadence. In JDK 16, Records were promoted to a full language

feature and included in the Java SE specification.

For those running enterprise-wide mission-critical applications, updating

to a new version of Java every six months is unlikely to be an option. For

those users, providers of OpenJDK distributions have followed the Oracle

JDK to provide long-term support (LTS) releases. Thankfully, all OpenJDK

distributions are aligned on which versions these are. JDK 11 is the

current LTS, and we’ll have the next one in September with the release of

JDK 17. Many distributions also provide extended updates for JDK 8. The

survey results show that over 60% of respondents are still using JDK 8

in production, so they will still require timely access to updates providing

security patches and bug fixes.

Simon Ritter
@speakjava

Deputy CTO at Azul Systems

https://twitter.com/speakjava

Some users are still running on even older releases, often to maintain

access to legacy applications where migration to a newer version of the

JDK is not cost-effective. In these cases, Azul’s Enterprise Zulu builds of

OpenJDK also include JDK 6 and JDK 7 support.

To enable the widest selection of deployable Java runtimes, Azul offers

what we call Medium Term Support (MTS) releases, currently for JDK 13

and 15. These can be deployed in production and include all updates until

18 months after JDK 17 is released. This enables users to take advantage

of cool new features like Records and have plenty of time to migrate from

JDK 15 to 17.

I’m sure I’m not the only person who believes that most of Java’s continued

popularity has resulted from the managed runtime nature of the Java

Virtual Machine (JVM). Things like automated memory management and

just-in-time (JIT) compilation delivers more reliable applications that often

outperform statically compiled code. Developers are not constrained to

Java but can compile languages like Kotlin and Scala to bytecodes and

benefit from the JVM in the same way. That Java is easily the most popular

JVM language is another testament to how well it was originally designed

and has been thoughtfully developed.

This survey provides interesting insights into how both Java the language

and Java the platform is being used. I think it’s clear to see that, even

after twenty-six years, Java shows no sign of slowing down or becoming

less relevant to the needs of enterprise application developers. What’s

important with a new release every six months is to keep testing your

application code with the latest version. This will make the switch to a

new LTS release in production as simple as possible.

All rights reserved. 2021 © Snyk 14

JVM languages used for applications in production

While the variety of JVM languages grew over the

last couple of years, Java is very much on top.

With over 90% of developers using Java, we can

see that it remains a very popular language.

We see a consistently large percentage every

year because many companies rely heavily

on Java. In addition, we see that the constant

development of the language helps maintain the

level of popularity.

0% 20% 40%

10%

8.4%

17.7%

13%

Kotlin

Groovy

Scala

Clojure

JRuby

Other

2.3%

0.7%

10% 30%

Multiple responses allowed.

91%Java

60% 80%50% 70% 90% 100%

Multiple responses allowed.

All rights reserved. 2021 © Snyk 15

In last year’s report, we asked, “What is your main

JVM language?” which allowed one pick. At that

point, 86.9% chose Java. However, the follow-up

questions here were, “Do you write or maintain

any Java applications?” and “For those who don’t

use Java in their main application, do they use it at

all?” The combined result last showed us that 96%

of the respondents used Java. This is very similar

to the 91% we have this year and confirms the

stable popularity and importance of the language.

The broader question we asked this year

showed that the popularity of Kotlin is more

extensive than we thought last year. With an

impressive 17.7% of the developers using Kotlin

in production, it has a steady second place.

However, it is interesting to see that 15% of the

developers use Kotlin together with Java. This

is probably because of the great interoperability

between Kotlin and Java, and likely the main

reason for its success. It shows that Kotlin is

not commonly used as the only JVM language in

production for writing applications.

In general, we see that 33% use more than

one JVM language in their stack, which is

interesting because 58.8% only use Java

without anything else. With 91% having Java

in their stack, almost all users that use two or

more languages have Java included.

All rights reserved. 2021 © Snyk 16

Additional data sources

First, let’s take a look at the TIOBE index. This index measures

the popularity of all programming languages. TIOBE calculates

the ratings based on the number of skilled engineers worldwide,

courses, and third-party vendors. They use popular search

engines such as Google, Bing, Yahoo!, Wikipedia, Amazon,

YouTube, and Baidu to gather this data.

When looking at the top 50 languages in the April 2021 Tiobe

index and filtering the JVM we see the following.

Position Language Rating

2 Java 11.23%

17 Groovy 1.04%

26 Scala 0.61%

39 Kotlin 0.32%

> 50 Clojure

All rights reserved. 2021 © Snyk 17

In early April, we also looked at GitHub and searched for the amount of repo’s containing a certain JVM

language. We used the GitHub API for this matter, as the results seemed more stable than a web search.

We can conclude that Java is, by far, the most popular language in all sources we consulted for this

report, and it will probably stay this way in the foreseeable future. An interesting finding is the difference

between the popularity of Scala, Groovy, and Kotlin. Both the amount of GitHub repositories and the

survey results put Kotlin in second place. However, according to the TIOBE index, both Scala and Groovy

are more popular. Nevertheless, we cannot deny that Kotlin is making a significant impact within the JVM

landscape. And it undoubtedly stays this way or even grows more in the near future.

Java
9.5M

Kotlin
531K

Scala
194K

Clojure
76K

64K

Number of repositories for JVM languages on Github

Groovy

All rights reserved. 2021 © Snyk 18

Most popular IDEs

For years, we’ve seen the dominance of JetBrains

IntellIJ IDEA in the Java ecosystem. This year is

not any different. IntelliJ IDEA is the most widely

used within the JVM community. According to our

survey, 51.3% use the Ultimate (paid) version and

27.3% the Community (free) version.

In the previous year, we only asked for “your main

IDE,” but we noticed that more and more people

are using multiple IDEs for several reasons.

Specific tooling that a developer uses for a project

might build on top of the Eclipse IDE or Apache

Netbeans, while for another project the developer

might prefer VS Code or IntelliJ IDEA.

The results are quite amazing and we see that

adoption of Visual Studio Code — currently 23.2%

and 2% last year — grew tremendously. The same

holds for the popularity of Apache Netbeans,

with almost 13% today and only 1% last year.

We believe the reason for these increases are

because of the ability to answer with more than

one answer.

70%

13.6%

24.6% 23.2%

0%

10%

20%

30%

40%

71.6%

12.9%

5.9%

Visual Studio
Code

Eclipse
IDE

IntelliJ
IDEA

Vi/Vim/
Emacs/etc

Apache
NetBeans

Android
Studio

PaidFree

50%

60%

1.1%

Oracle
JDeveloper

0.9%

Other

80%

70%

13.6%

24.6% 23.2%

0%

10%

20%

30%

40%

71.6%

12.9%

5.9%

Visual Studio
Code

Eclipse
IDE

IntelliJ
IDEA

Vi/Vim/
Emacs/etc

Apache
NetBeans

Android
Studio

PaidFree

50%

60%

1.1%

Oracle
JDeveloper

0.9%

Other

80%

Multiple responses allowed.

All rights reserved. 2021 © Snyk 19

When looking at the amount of different

IDEs a Java developer uses, we found the

following statistics.

We see that almost half of the developers use

a single IDE to do all of their work. On the flip

side, more than half of the JVM community

sees fit for multiple IDEs, and almost a quarter

needs to use four or more different IDE’s. The

only conclusion we can draw for this is that

none of the IDEs work well enough on their own

for at least the 24.6% that use four or more.

Why else would you use so many?

Also interesting to note is that the amount of

Eclipse users is relatively steady, with 24.6%

this year and 20% last year. This appears to

indicate that most Eclipse users consider this

IDE their main tool for development. For IntelliJ,

there is a small percentage of people (7%) that

use both the free Community version and the

Ultimate version. As the Ultimate (paid) version

is an upgrade of the free community version,

the question is why?

Three IDEs

Two IDEs

One IDEs

Four or more IDEs

48.9%

16.7%

24.6%

9.7%

Three IDEs

Two IDEs

One IDEs

Four or more IDEs

Three IDEs

Two IDEs

One IDEs

Four or more IDEs

Three IDEs

Two IDEs

One IDEs

Four or more IDEs

All rights reserved. 2021 © Snyk 20

Tools for building applications

Maven is still the number one build system for

the Java ecosystem. With more than 76% of

developers using Maven, it is even higher than in

last year’s survey. Gradle is comfortably holding

seconds place with 38.1%, also scoring higher

than it did last year.

Similar to the other questions, people were

allowed to put in multiple answers. This, however,

didn’t substantially impact the relative popularity

of the tools.

We find it interesting that 5.7% reported using

another build system. It is worth mentioning

that there were quite a few people mentioning

Leiningen and Clojure CLI tools. Both tools are

used by Clojure developers, with Leiningen

used by about 2.3% of the respondents and

Clojure CLI by 1.1%.

70%

5.3%

38.1%

11.8%

0%

10%

20%

30%

40%

76.2%

5.7%
2.7%

AntGradleMaven SBT Other None

50%

60%

80%

Multiple responses allowed.

All rights reserved. 2021 © Snyk 21

Package manager distribution
within Snyk

We see the same distribution of package

managers if we look at the data we collected

from Snyk. In the Java ecosystem, we can scan

for open source vulnerabilities for three different

package managers: Maven, Gradle, and SBT.

Looking at the distribution within Snyk Open

Source for Java, we can conclude that the

numbers from the survey are consistent with our

results. Maven is still clearly on top of the rest,

with over 70% usage. It also appears that the

Maven vs Gradle war is over and both have found

their place within the JVM ecosystem.

73.8%

1.8%

24.6%

SBTGradleMaven

Securing vulnerabilities in the
Java ecosystem with Snyk

It is incredible to see that after more than 25 years, the Java ecosystem

is still relevant. I would even say more relevant than ever before, as we’ve

watched the JVM and its ecosystem evolve significantly over the years.

And while Java is still the most popular, other languages have been created

— and widely adopted — that run on the JVM, such as Scala, Groovy, and

more recently, Kotlin. This flexibility could help explain Java’s ongoing

popularity. But with increased popularity, we need to focus on increased

security concerns.

Even as Java adoption grows, we still see people clinging on to older

versions. We see that people are slowly moving away from Java 8 towards

more recent versions, which is good news. But we still have a long way

to go as more recent versions are appearing more often in development

environments, and not in production.

We also see that people are using many frameworks and libraries to create

their applications. Spring Boot is currently the most popular framework,

probably because it already comes with many different features. This also

comes with certain problems.

The problem is that the use of many libraries comes with a price. You

have to maintain these libraries just as much as your own custom

code. Large frameworks have a lot of transitive dependencies and

all the dependencies end up in your code. You have to be well aware

that these dependencies are well maintained, healthy and most

importantly free of security vulnerabilities. Updating both your Java

distribution and your dependencies is essential, but unfortunately, not

always a priority for many development teams.

Java and the JVM ecosystem are continually advancing and releasing

new language features regularly. Together with the growth of open

source, developers need to be empowered with actionable security

advice that helps them find and fix security issues. This aligns well

with Snyk’s mission to help developers worldwide to build securely.

Brian Vermeer
@BrianVerm

Developer Advocate at Snyk

https://twitter.com/brianverm

Snyk for Java security

Java developers using Snyk can scan their Maven, Gradle, and SBT

projects and find and fix security issues in the open source libraries they

import to their manifest files. They can monitor their projects, and detect

vulnerabilities in containerized Java applications, whether impacting the

Java runtime, or the open source libraries internal to the operating system

of the container image. With the Snyk Code IntelliJ plugin, developers can

experience a developer-first approach to static application security testing,

leveraging security findings and actionable insights right from their IDE.

Java and the JVM ecosystem are crucial for Snyk, and one of the reasons

we actively contribute to the Java community. For instance by publishing

insightful resources about secure development in Java such as:

•	 Java security best practices cheat sheet

•	 10 best practices to build a Java container with Docker

•	 Explaining the Java deserialize vulnerability

•	 Fixing vulnerabilities in Maven projects

•	 And many more blogs and videos

In addition, we actively contribute to communities like Foojay.io, the

Virtual JUG, and several local Java User Groups. But also, on the product

side, you see Java plays an important role. Because more developers

and companies use Snyk with Java, new features are developed with the

primary focus on Java.

Java developers affinity to security

As we said earlier, with any popular ecosystem, as it grows, so

do security concerns. With Java, even though it’s evolving rapidly,

not everyone is updating to the latest version. The same holds for

Java applications. We tend to use a lot of dependencies, and these

packages and frameworks we use, depend on other libraries. All direct

and indirect packages end up in your application. Unfortunately, we

see that a lot of developers could do a better job at maintaining their

dependencies. Once a dependency is declared in our manifest file, it

tends to stay there forever. Updating is not always a priority, and so is

removing unused packages.

With that in mind, let’s look at the top ten most common vulnerable

packages in the Java ecosystem in 2021 so far:

01.	org.slf4j:slf4j-api

02.	com.fasterxml.jackson.code:jackson-core

03.	com.fasterxml.jackson.code:jackson-annotations

04.	com.fasterxml.jackson.code:jackson-databind

05.	org.springframework:spring-beans

06.	org.springframework:spring-core

07.	commons-codec:commons-codec

08.	commons-logging:commons-logging

09.	org.springframework:spring-context

10.	org.springframework:spring-aop

https://snyk.io/blog/gradle-plugin-by-snyk-gradle-dependencies-scanning/
https://snyk.io/blog/best-practices-to-build-java-containers-with-docker/
https://snyk.io/blog/how-to-fix-java-security-issues-while-coding-in-intellij-idea/
https://snyk.io/blog/10-java-security-best-practices/
https://snyk.io/blog/best-practices-to-build-java-containers-with-docker/
https://snyk.io/blog/serialization-and-deserialization-in-java/
https://snyk.io/blog/fixing-vulnerabilities-in-maven-projects/
https://www.youtube.com/watch?v=tjfR35jDqxA&list=PLQ6IC7glz4-XkJv-RE3w4tVnHyrBFvoEu
https://foojay.io
http://virtualjug.com/

We calculated this list by looking at the number of projects we found a

vulnerable package in, during the first quarter of 2021.

Most of these packages do not have any top-level vulnerabilities. The

problems are in the underlying transitive dependencies. In addition, in most

cases the vulnerabilities are already solved. For instance, the Jackson folks

are doing an excellent job in fixing their libraries quickly. This also holds

for the Spring libraries. In most cases, there was already a newer version

available that didn’t have the issues.

Taking care of your dependencies is essential. Snyk offers numerous

integrations, like the ones for the most popular IDEs: IntelliJ IDEA, Eclipse,

and VS Code. But you can also integrate with your favorite build tool,

whether you prefer Maven or Gradle.

Development at Snyk for the
Java Ecosystem

With the continued growth of the Java ecosystem, we believe that

enabling Java and other JVM developers with security information

is essential. We try to achieve this by providing tooling and security

insights in all steps of your development lifecycle. Picking the

tooling that fits your current process is essential. For almost all

new features we develop at Snyk, we treat Java as a first-class

citizen. New features like Snyk Code, our SAST tooling where we

help you secure your custom code, and prioritization are developed

with Java support from the start.

https://snyk.io/ide-plugins/
https://snyk.io/ide-plugins/
https://plugins.jetbrains.com/plugin/10972-snyk-vulnerability-scanner
https://marketplace.eclipse.org/content/snyk-vuln-scanner
https://marketplace.visualstudio.com/items?itemName=snyk-security.vscode-vuln-cost
https://support.snyk.io/hc/en-us/articles/360004570477-Maven-plugin-integration
https://support.snyk.io/hc/en-us/articles/360003817357-Snyk-for-Java-Gradle-Maven-
https://snyk.io/product/snyk-code/
https://app.snyk.io/login

All rights reserved. 2021 © Snyk 25

Application frameworks

The Java world is still a Spring-dominated world, with over

half of the market using Spring Boot and almost a third

using Spring MVC. But Java EE and its successor Jakarta

EE are doing well, at nearly 24.2% and 12.7%.

An up and coming framework in this year’s list is Quarkus.

With more than 10%, not a bad score at all, we will have to

see how this continues over the next couple of years.

We find it quite astonishing that there’s a substantial

amount of respondents — 16% — that don’t use any

framework. These may be the die-hard developers that

require control over everything that happens in their

application. That is a heavy burden and deserves a lot of

respect. In general, we see that we live in a highly Spring-

dominated universe, which appears to indicate that the

Spring folks are doing a great job serving the community.

Only time will tell if this can be considered a dynasty and if

Spring will stay the king of Java frameworks. Honestly, I do

not expect much change shortly, but who knows?!

50%40%

4.2%

0% 20% 30%10%

3.9%

3.8%

2.6%

6.5%

3.2%

3.7%

2.5%

1.7%

Dropwizard

GWT

Struts

JHipster

Play

Vaadin

Grails

Wicket

Other

None

7.6%

6.8%

5%

MicroProfile

JSF

Micronaut

Multiple responses allowed.

16%

28.7%

10.8%

57.6%

24.2%

12.7%

Spring Boot

Spring MVC

Java EE

Jakarta EE

Quarkus

60%

Multiple responses allowed.

All rights reserved. 2021 © Snyk 26

Demographics

We expected more responses from

North America, but the demographics

are similar to the responses from the

last couple of years. It is great to see,

however, that we have developers

from all over the globe responding to

this survey! This shows how the JVM

ecosystem is thriving everywhere.

1% 60%

60%
19%

5%

12%

3%

2%

<1%

All rights reserved. 2021 © Snyk 27

The vast majority of respondents come from a

technical background with 90% of them being

either developers, team leaders, or architects,

consultants, or engineering managers. More than

half state they are software developers, and a not

insignificant number of C-level employees took

time out of their busy schedule to participate in

our survey.

Software Developer50.1%

Architect22.4%

Team Leader6.9%
Consultant5.3%
Engineering Manager5.3%
C-level2.5%
Hobbyist2.0%
Developer Relations1.8%
Student1.0%
Project Manager, Ops, QA<1%
Other1.1%

All rights reserved. 2021 © Snyk 28

With almost 35% of respondents working for companies that have less than 100 employees, we see that

Java continues to have a significant role in startups and in small-to-medium businesses. Although the

majority works and larger enterprises it is safe to say that Java has a role to play everywhere.

7.6%

14%

0%

10%

20%

30%

40%

13.3% 11.7%

7.9%6.9%

1-9 10-49 50-99 100-249 500-999250-490

37%

1000+

1.7%

I’m out
of work

The State of Spring

Integration

Spring has popularized various design patterns through use case-specific

frameworks like Spring Data, Spring Security, Spring Batch, Spring

Integration, Spring Cloud Stream, Spring Cloud Data Flow, Spring Webflux,

and Spring MVC.

The cloud platform integrations that have sprung up are essential areas

of innovation. The Spring team works closely with the teams working on

the various Spring integrations for Alibaba Cloud, AWS, Google Cloud, and

Microsoft Azure.

The Spring team works particularly closely with Microsoft. We’ve even

jointly developed a platform, Azure Spring Cloud, optimized for deploying

Spring-based applications and microservices.

Kubernetes

Kubernetes is production for a good many organizations today. Kubernetes is

a foundational layer. I tend to think, like Kelsy Hightower (@kelseyhightower),

that Kubernetes is a foundational piece on top of which to layer application-

focused abstractions and platforms. It’s no wonder that people use things

like Cloud Foundry, Istio, and KNative, and not raw Kubernetes. Spring Boot is

an ideal application framework for Kubernetes-bound workloads.

Kubernetes-specific configuration

Spring Boot applications know when they’re running on Kubernetes. A

Spring Boot application may conditionally activate configuration (spring.

config.activate.on-cloud-platform=kubernetes) and objects

(@ConditionalOnCloudPlatform(CloudPlatform.KUBERNETES))

based on the cloud provider in which you’re running.

Josh Long
@starbuxman

Spring Developer Advocate at
Tanzu VMware

Capturing the state of Spring is a big task! If you want to dive deep into the details, I must direct you

to my weekly column on the Spring blog, called This Week in Spring. In this report, I’ll just outline

some of the tentpole themes I see in the Spring ecosystem.

https://spring.io/blog/2020/09/02/hello-azure-spring-cloud
https://twitter.com/kelseyhightower/status/935252923721793536
https://twitter.com/starbuxman
https://spring.io/team/joshlong

External configuration with ConfigMap

Spring can read configuration from all sorts of places, like JNDI,

environment variables, the Spring Cloud Config Server, Apache Zookeeper,

Hashicorp Consul, and more. And it can also read configuration from

Kubernetes ConfigMaps and Secrets mounted as either a directory

(e.g.: spring.config.import=configtree:/mnt/my/config) or as

the environment.

Probes
Kubernetes has this concept of a readiness probe — an HTTP endpoint

that tells Kubernetes if the application is ready to handle traffic — and a

liveness probe — an HTTP endpoint that tells Kubernetes if the application

is still able to accept the traffic. Spring Boot can provide these for you

automatically if you’re running in Kubernetes or specify management.

endpoint.health.probes.enabled=true.

Graceful shutdown

There are a lot of reasons why Kubernetes might need to shut down and

destroy your pod: perhaps you deployed a new pod, or the liveness probe

for an existing one has failed. What will happen to inflight transactions

when Kubernetes destroys those pods? Spring Boot supports graceful

shutdowns (server.shutdown=graceful), and immediate shutdowns

(server.s hutdown=immediate). Spring Boot will stop accepting any

new requests in graceful shutdown and wait for a certain interval (which

you also need to configure in the Kubernetes pod specification) before it

shuts down the container.

GraalVM and Spring Native

GraalVM native images are promising. They can take your JVM

application and turn it into a lightweight, fast, architecture-specific

application binary by doing static analysis of your application,

determining which classes the runtime will load, and discarding

everything else. Everything. The trouble is that it sometimes chucks

out things your application needs at runtime, making some dynamic

behavior typical in a Java application — like JNI, resource loading,

serialization, proxies, and reflection — more complicated.

GraalVM is what we in the high falutin framework business call a

 “party pooper.” You can specify which additional classes to retain.

Enter Spring Native: it knows all about the dynamic behavior of your

typical Spring Boot application.

A Spring Native application starts up much faster (milliseconds, not

seconds or minutes), but unless you’re doing serverless (with Spring

Cloud Function and Spring Native, perhaps?), then startup speed

misses the actual value. GraalVM native images are very efficient at

runtime - tens of megabytes, not hundreds. Getting started is easy: go

to the Spring Initializr and add the experimental (as of Q2 2021) Spring

Native support and try it out. You can review the generated pom.xml by

clicking Explore.

http://start.spring.io/

Buildpacks

The core conceit of the Cloud Native Foundation’s Buildpacks project

is that there are only so many different ways to containerize a given

application artifact, be it a .jar, a .war, a .NET .exe, etc. So why reinvent

the wheel? The Paketo project features a simple CLI that you can point at

your application binary, and it’ll containerize it: pack build. It couldn’t

be easier! Or could it? Spring Boot integrates buildpacks directly into the

Maven and Gradle plugins (e.g.: mvn spring-boot:build-image). The

plugins build Docker images for your local container registry that you can

docker tag, and then docker push, to your container registry of choice

(Dockerhub, Google Container Registry, or even VMware’s Harbor project).

The Spring Native support also uses buildpacks.

Reactive Programming

The Spring team was one of the cofounders of the Reactive Streams

specification, with Lightbend, the Eclipse Foundation, and Netflix. We built

the Reactor project, which serves as the foundation for all things reactive

in the Spring ecosystem. There is support for reactive programming in

virtually every Spring project. Reactive programming is a big deal because

it supports three main qualities: resource efficiency, ease of composition,

and robustness.

Reactive programming supports resource efficiency by allowing us to

spend as little time on a thread as possible.

Reactive programming supports ease of composition because it

gives us a single abstraction that allows us to deal with small batches

of work or large (potentially unbounded) batches of work. It lets us

deal with slow or fast data. Just remember the reactive streams’

Publisher<T> interface and the Reactor project’s Mono<T> and

Flux<T>. These types compose nicely, freeing you to think about the

higher-order algorithms and business you’re trying to express, and not

the tedious glue code so typical of distributed systems.

Reactive programming also gives a single unified abstraction, a central

place to add support for reliable services by supporting backpressure,

or flow control, to allow the consumer to control the consumption rate

from the producer. These reactive types also include operators that

support easy error handling, timeouts, retries, etc. This robustness is

one reason Microsoft has issued guidance for all their Java Azure SDK

teams — whether those SDKs are specifically for Spring users or not —

to build their clients on Project Reactor.

http://paketo.io/
https://docs.pivotal.io/vmware-harbor

RSocket

Reactive programming is fantastic! Many protocols and client libraries

map to reactive types, but HTTP is a bit more complex, as there’s no way

to communicate backpressure at the protocol level. RSocket is a binary

protocol designed by engineers at Netflix and Facebook to get around

this and other imitations in HTTP 2 and GRPC. It is a multiplexed, stateful,

payload-agnostic, binary protocol that supports different message

exchange patterns. The official RSocket Java client builds on Reactor, and

Spring offers a component model. There’s integration with Spring Security,

Spring Integration, and more. We’re also contributing to the RSocket broker.

Next Steps

You can always look at the Spring Projects’ experimental Github

organization — github.com/spring-projects-experimental — to see

the things on which we’re working. I see Spring Retrosocket, Spring

Native, a from-the-ground-up authentication and authorization server,

GraphQL support, and so much more.

Spring’s ecosystem is constantly growing. Check out the Spring

Guides to learn more. The Spring team is usually on Gitter.im/spring-

projects or Gitter.im/spring-cloud if you want to talk. We also monitor

StackOverflow. Most of our Github projects have issues labeled to

indicate we’d welcome a first-time contributor.

As always, you can find me, Josh Long, your humble Spring Developer

advocate, on Twitter (@starbuxman).

https://github.com/spring-projects-experimental
https://spring.io/guides
https://spring.io/guides
https://gitter.im/spring-projects
https://gitter.im/spring-projects
https://gitter.im/spring-cloud
https://twitter.com/starbuxman

Develop fast. Stay secure.

     

Report author

Brian Vermeer (@BrianVerm)

Report design

Growth Labs (@GrowthLabsMKTG)

http://snyk.io
https://twitter.com/snyksec
https://www.facebook.com/snyksec
https://www.linkedin.com/company/snyk/
https://www.youtube.com/channel/UCh4dJzctb0NhSibjU-e2P6w
https://www.instagram.com/lifeatsnyk/
http://twitter.com/BrianVerm
http://twitter.com/GrowthLabsMKTG

	Button 5:

